
OpenGL Tutorial
Release 1.0

Digia, Qt Learning

February 28, 2013

Contents

1 About this Tutorial 1
1.1 Why Would You Want to Read this Guide? 1
1.2 Get the Source Code and the Tutorial in Different Formats 1
1.3 License . 2

2 Introduction 3
2.1 What’s OpenGL . 3
2.2 Drawing in 3D Space . 4
2.3 A Short Recapitulation of Linear Algebra . 5
2.4 Coordinate Systems & Frame Concept . 8
2.5 The OpenGL Rendering Pipeline . 10
2.6 OpenGL API . 12
2.7 The OpenGL Shading language . 13

3 Using OpenGL in your Qt Application 16
3.1 Hello OpenGL . 16
3.2 Rendering in 3D . 22
3.3 Coloring . 26
3.4 Texture Mapping . 28
3.5 Lighting . 32
3.6 Buffer Object . 39

4 Conclusion & Further Reading 43

i

ii

CHAPTER 1

About this Tutorial

1.1 Why Would You Want to Read this Guide?

This tutorial provides a basic introduction to OpenGL and 3D computer graphics. It shows how
to make use of Qt and its OpenGL related classes to create 3D graphics by using OpenGL’s pro-
grammable pipeline. The tutorial provides many examples that demonstrate the basic features
of OpenGL programming such as rendering, texture mapping, lighting, and so on. By the end
of the tutorial, you will have a good understanding about how OpenGL works and you will also
be able to write custom shader programs.

1.2 Get the Source Code and the Tutorial in Different
Formats

A .zip file that contains the full code source of the tutorial’s examples is provided:

1

OpenGL Tutorial, Release 1.0

Source code1

The guide is available in the following formats:

PDF2

ePub3 for ebook readers. Further details can be found here4.

Qt Help5 for Qt Assistant and Qt Creator. In Qt Assistant, in the Preferences Di-
alog6 under the Documentation tab (in a collapsible menu for Mac users), click
the Add button to add this guide in .qch format. We do the same in Qt Creator
under the Options dialog in the Help section. Here you can add this guide in the
Documentation tab.

1.3 License

Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved.

This work, unless otherwise expressly stated, is licensed under a Creative Commons
Attribution-ShareAlike 2.5.

The full license document is available from http://creativecommons.org/licenses/by-
sa/2.5/legalcode .

Qt and the Qt logo is a registered trade mark of Digia plc and/or its subsidiaries and is used
pursuant to a license from Digia plc and/or its subsidiaries. All other trademarks are property
of their respective owners.

What’s Next?

Next will be an introduction to OpenGL and the basics of drawing in 3D.

1http://releases.qt-project.org/learning/developerguides/qtopengltutorial/opengl_src.zip
2http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.pdf
3http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.epub
4http://en.wikipedia.org/wiki/EPUB#Software_reading_systems
5http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.qch
6http://qt-project.org/doc/qt-4.8/assistant-details.html#preferences-dialog

1.3. License 2

http://releases.qt-project.org/learning/developerguides/qtopengltutorial/opengl_src.zip
http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.pdf
http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.epub
http://en.wikipedia.org/wiki/EPUB#Software_reading_systems
http://releases.qt-project.org/learning/developerguides/qtopengltutorial/OpenGLTutorial.qch
http://qt-project.org/doc/qt-4.8/assistant-details.html#preferences-dialog
http://qt-project.org/doc/qt-4.8/assistant-details.html#preferences-dialog
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

CHAPTER 2

Introduction

This tutorial provides a basic introduction to OpenGL and 3D computer graphics. It shows how
to make use of Qt and its OpenGL-related classes to create 3D graphics.

We will use the core features of OpenGL 3.0/ 2.0 ES and all following versions, which means
that we will be utilizing OpenGL’s programmable rendering pipeline to write our own shaders
with the OpenGL Shading Language (GLSL) / OpenGL ES Shading Language (GLSL / ES).

Chapter one gives an introduction to 3D computer graphics and the OpenGL API including the
OpenGL Shading Language (GLSL) / OpenGL ES Shading Language (GLSL / ES). If you are
already familiar with this topic and only want to see how to use OpenGL in your Qt programs,
you can skip this introductory chapter and move on to chapter two.

In chapter two, we present examples which utilize the information covered in chapter one and
show how to use OpenGL together with Qt’s OpenGL-related functionality.

At the end of this tutorial you find some references and links that may come in handy, especially
when working through the examples. Note that this tutorial is meant to get you started with
this topic and can not go into the same depth as a decent OpenGL dedicated book would. Also
note that the Qt’s OpenGL-related classes makes your life easier by hiding some of the details,
which you would encounter if you wrote your programs using only the OpenGL API.

In the example part, we will use Qt’s high-level functionality whenever possible and only briefly
name the differences. So if you intend to get a complete understanding of how to use native,
you should additionally consult a tutorial or book dedicated to this topic.

2.1 What’s OpenGL

OpenGL is the industry’s most widely used 2D and 3D graphics API. It is managed by the
nonprofit technology consortium, the Khronos Group, Inc. It is a highly portable, scalable,
cross-language and cross-platform specification that defines a uniform interface for the com-
puter’s graphics accelerator. It guarantees a set of basic capabilities and allows vendors to
implement their own extensions.

3

OpenGL Tutorial, Release 1.0

OpenGL is a low-level API which requires the programmer to tell it the exact steps needed to
render a scene. You cannot just describe a scene and have it displayed on your monitor. It is up
to you to specify geometry primitives in a 3D space, apply coloring and lighting effects, and
render the objects onto the screen. While this requires some knowledge of computer graphics,
it also gives you a lot of freedom to invent your own algorithms and create a variety of new
graphical effects.

The sole purpose of OpenGL is to render computer graphics. It does not provide any function-
ality for window management or for handling events such as user input. This is what we use
Qt for.

2.2 Drawing in 3D Space

The geometry of three dimensional objects is described by an arrangement of very basic build-
ing blocks (primitives) such as single points, lines or triangles. Triangles are the most common
ones as they are used to approximate the surface of objects. Each surface can be split up into
small planar triangles. While this works well on edged objects, but smooth objects like spheres
will look jagged. Of course you could use more triangles to improve the approximation, but this
comes at the cost of performance as more triangles will have to be processed by your graphics
card. Instead of simply increasing the polygon count, you should always consider additional
techniques such as improving the lighting algorithm or adapting the level of detail.

To define the spatial properties of your objects, you set up a list of points, lines, and/or triangles.
Each primitive in turn is specified by the position of its corners (a vertex / vertices). Thus it
is necessary to have a basic understanding of how to define points in space and to manipulate
them efficiently. But we will brush up our linear algebra knowledge in a moment.

To see the objects, you must apply coloring to your primitives. Color values are often defined
for each primitive (for each vertex to be precise) and used to paint or fill in with color. For more
realistic applications, images (called textures) are placed on top of the objects. The appearance
can be further adapted according to material properties or lighting. So how do we actually get
our scene displayed on the screen.

As the computer screen is a two dimensional device, we need to project our objects onto a plane.
This plane is then mapped to a region on our screen called the viewport*. To understand this
process illustratively, imagine that you are standing in front of the window and sketching the
outlines of the objects you see outside onto the glass without moving your head. The drawing
on the glass then represents a two dimensional projection of your environment. Though the
technique is different, this kind of projection also occurs in a camera when taking a picture.

2.2. Drawing in 3D Space 4

OpenGL Tutorial, Release 1.0

The clipped pyramid is called the viewing volume. Everything that is located inside this volume
is projected onto the near side towards the imaginary viewer. Everything else is not drawn.

There are two major types of projections: perspective projections and orthographic projections.

What we just introduced is called perspective projection. It has a viewing volume in the form
of a frustum and adds the illusion that distant objects appear smaller than closer objects of the
same size. This greatly contributes to realism, and therefore, is used for simulations, games
and VR (virtual reality) applications.

The other type is called orthographic projection. Orthographic projections are specified by a
rectangular viewing volume. Every two objects that have the same size also have the same
size in the projection regardless of its distance from the viewer. This is often used in CAD
(computer aided design) tools or when dealing with 2D graphics.

2.3 A Short Recapitulation of Linear Algebra

As it is essential to have a basic understanding of linear algebra when writing OpenGL pro-
grams, this chapter will briefly state the most important concepts involved. Although we will
mostly let Qt do the math, it is still good to know what is going on in the background.

The location of a 3D point in relation to an arbitrary coordinate system is identified by its x-, y-
and z-coordinates. This set of values is also called a vector. When used to describe primitives,
it is called a vertex.

An object is then represented by a list of vertices.

2.3. A Short Recapitulation of Linear Algebra 5

OpenGL Tutorial, Release 1.0

One thing you will often want to do is change the position, size or orientation of your object.

Translating an object is as easy as adding a constant vector (here named d‘) that specifies the
displacement to all your objects’ vertices (here named v).

Scaling means multiplying the vertices by the desired ratio (here named s).

Rotating, stretching, shearing, or reflecting is more complicated and is achieved by multiply-
ing the vertices by a transformation matrix (here named T‘). A matrix is basically a table of
coefficients that are multiplied by a vector to get a new vector, where each element is a linear
combination of the multiplied vector’s elements.

As an example, these are matrices rotating the vector around the coordinate system’s x, y, and
z axes. Arbitrary rotations can be composed by a combination of these.

2.3. A Short Recapitulation of Linear Algebra 6

OpenGL Tutorial, Release 1.0

There is also one matrix that does not change a vector at all. It is called the identity matrix and
consists of ones on the main diagonal and zeros elsewhere.

If you use a matrix to transform a vector, it is important that the matrix is written on the left side
of the multiplication sign and the vector is on the right side. Also, the number of the matrice’s
columns needs to match the number of the vector’s components. Otherwise the multiplication
is mathematicaly invalid and math libraries may return unexpected results.

Keep in mind that transformations are not commutative, i.e. the result of a concatenation of
transformations depends on their order. For example, it makes a difference whether you first
rotate an object and then translate it or if you do it the other way around.

As it is more convenient (and even faster for OpenGL) to express all these operations as a single
matrix vector multiplication, we extend our formalism to so called homogeneous coordinates.
This also enables us to easily apply all kinds of affine transformations such as the projections,
which we discussed in chapter 1.2. We basically add a fourth dimension, called a scaling factor,
to our vertices. This might seem to complicate things, but you actually do not really have to
pay attention to that factor as it is set to 1 by default and you will rarely change it yourself.
All you need to do is declare your vertices with an additional element set to 1 (which is even
often implied by default). (In this chapter we denote homogeneous coordinates by a hat on the
variable names.)

A transformation can then be written as follows:

A series of transformations can be written as a series of matrix multiplications, and the resulting
transformation can be stored in a single matrix.

2.3. A Short Recapitulation of Linear Algebra 7

OpenGL Tutorial, Release 1.0

2.4 Coordinate Systems & Frame Concept

How can we use this knowledge of linear algebra to put a three dimensional scene on screen?
In this tutorial, we will use the most widely used concept called the frame concept. This pattern
allows us to easily manage objects and viewers (including their positions and orientations) as
well as the projection that we want to apply.

Imagine two coordinate systems: A and B. Coordinate system B originates from coordinate
system A via a translation and a rotation that can be described by the following matrix:

Then for each point defined as

in coordinate system B, the corresponding coordinates of point

can be calculated,

and

represent the same point in space but are only noted down differently.

As for the frame concept, every instance of an object is bound to its own coordinate system (also
referred to as its frame). The position and orientation of each object is then defined by placing
the objects’ frames inside the world’s frame. The same applies to the viewer (or camera) with
one difference: for simplicity, we actually do not place the viewer’s frame inside the world’s
frame, but instead do it the other way around (i.e. placing the world’s frame inside the viewer’s
frame).

2.4. Coordinate Systems & Frame Concept 8

OpenGL Tutorial, Release 1.0

This means we define the position and rotation of every instance of an object in relation to
the world’s coordinate system. The matrix defined by these parameters, which allows us to
calculate an object’s vertices inside the world’s coordinate system, is commonly called the
model matrix. Subsequently, we move from world coordinates to viewer coordinates (com-
monly called eye coordinates) using a matrix called the view matrix in just the same way. After
that, we apply the projection which transforms the object’s vertices from viewer coordinates
to the projection plane. This is done by a matrix called the projection matrix, which yields
normalized device coordinates with x, y and z values ranging from -1 to +1 (The -1 and +1
values correspond to positions on the viewing volume’s borders). OpenGL then maps all the
object’s points on this projection plane to the viewport that is shown on the screen.

Another matrix that is often used is the model-view-projection matrix. It is the concatenation
of the aforementioned three matrices. The model-view-projection matrix is generally passed to
the vertex shader, which multiplies this matrix by the object’s vertices in order to calculate the
projected form. You will learn about shaders in a later chapter.

The definition of these matrices has various advantages:

• In the design phase, every object’s model (i.e. its set of vertices) can be specified in
relation to an arbitrary coordinate system (for example its center point).

• The transformation process is divided into small steps, which are quite illustrative.

• All the used transformation matrices can be calculated, stored, and combined efficiently.

The figure above illustrates the steps that are required to yield proper screen coordinates from
object vertices. Different kinds of transformations are applied in a certain order. You throw in
some object vertices and, after some number crunching, you get the appropriate screen coor-
dinates. In this figure, you can also easily see why this part of 3D programming is called the
transformation pipeline.

2.4. Coordinate Systems & Frame Concept 9

OpenGL Tutorial, Release 1.0

2.5 The OpenGL Rendering Pipeline

The OpenGL rendering pipeline is a high-level model, which describes the basic steps that
OpenGL takes to render a picture on the screen. As the word pipeline suggests, all operations
are applied in a particular order. That is, the rendering pipeline has a state that takes some
inputs and returns an image to the screen.

The state of the rendering pipeline affects the behavior of its functions. As it is not practical to
set options every time we want to draw something, we can set parameters beforehand. These
parameters are then used in all subsequent function calls. For example, once you’ve defined
a background color, that color is used to clear the screen until you change it to something
else. You can also turn distinct capabilities such as depth testing or multisampling on and off.
Therefore, to draw an overlay image on top of your screen, you would first draw the scene with
depth testing enabled, then disable depth testing and draw the overlay elements, which will
then always be rendered on top of the screen regardless of their distance from the viewer.

The inputs to the pipeline can be provided as single values or arrays. Most of the time these
values will represent vertex positions, surface normals, textures, texture coordinates or color
values.

The output of the rendering pipeline is the image that is displayed on the screen or written into
memory. Such a memory segment is then called a framebuffer.

The figure below shows a simplified version of the pipeline. The elements that are not relevant
to this tutorial were omitted (such as tesselation, geometry shading, and transform feedback).

The main program that resides inside the computer’s memory, is executed by the CPU and
displayed in the left column. The steps executed on the graphics card are listed in the column
on the right.

2.5. The OpenGL Rendering Pipeline 10

OpenGL Tutorial, Release 1.0

The graphics card has its own memory and a GPU just like a small powerful computer that is
highly specialized in processing 3D data. Programs that run on the GPU are called shaders.
Both the host computer and the graphics card can work independently, and you should keep
both of them busy at the same time to take full advantage of hardware acceleration.

During vertex specification, the ordered list of vertices that gets streamed to the next step is set
up. This data can either be sent by the program that is executed on the CPU one vertex after
the other or read from GPU memory directly using buffer objects. However, repeatedly getting
data via the system bus should be avoided whenever as it is faster for the graphics card to access
its own memory.

The vertex shader processes data on a per vertex basis. It receives this stream of vertices along
with additional attributes like associated texture coordinates or color values, and data such as
the model-view-projection matrix. Its typical task is to transform vertices and to apply the
projection matrix. Besides its interface to the immediately following stage, the vertex shader
can also pass data to the fragment shader directly.

During the primitive assembly stage, the projected vertices are composed into primitives. These
primitives can be triangles, lines, point sprites, or more complex entities like quadrics. The user
decides which kind of primitive should be used when calling the draw function. For example,
if the user wants to draw triangles, OpenGL takes groups of three vertices and converts them
all into triangles.

During the clipping and culling stage, primitives that lie beyond the viewing volume, and there-
fore are not visible anyway, are removed. Also, if face culling is enabled, every primitive that
does not show its front side (but its reverse side instead) is removed. This step effectively
contributes to performance.

2.5. The OpenGL Rendering Pipeline 11

OpenGL Tutorial, Release 1.0

The rasterisation stage yields so called fragments. These fragments correspond to pixels on the
screen. Depending on the user’s choice, for each primitive, a set of fragments may be created.
You may either fill the whole primitive with (usually colored) fragments, or only generate its
outlines (for example, to render a wireframe model).

Each fragment is then processed by the fragment shader. The most important output of the
fragment shader is the fragment’s color value. Texture mapping and lighting are usually applied
during this step. Both the program running on the CPU and the vertex shader can pass data to it.
Obviously it also has access to the texture buffer. Because there are usually a lot of fragments in
between a few vertices, values sent by the vertex shader are generally interpolated. Whenever
possible, computational intensive calculations should be implemented in the vertex instead of
in the fragment shader as there are usually many more fragments to compute than vertices.

The final stage, per-sample operations, applies several tests to decide which fragments should
actually be written to the framebuffer (depth test, masking, and so on). After this, blending
occurs and the final image is stored in the framebuffer.

2.6 OpenGL API

This chapter will explain the conventions used in OpenGL. Although we will try to use Qt’s ab-
straction to the OpenGL API wherever possible, we will still need to call some of the OpenGL
functions directly. The examples will introduce you to the required functions.

The OpenGL API uses its own data types to improve portability and readability. These types
are guaranteed to hava a minimum range and precision on every platform.

Type Description
GLenum Indicates that one of OpenGL’s preprocessor definitions is expected.
GLboolean Used for boolean values.
GLbitfield Used for bitfields.
GLvoid sed to pass pointers.
GLbyte 1-byte signed integer.
GLshort GLshort 2-byte signed integer.
GLint 4-byte signed integer.
GLubyte 1-byte unsigned integer.
GLushort 2-byte unsigned integer.
GLuint 4-byte unsigned integer.
GLsizei Used for sizes.
GLfloat Single precision floating point number.
GLclampf Single precision floating point number ranging from 0 to 1.
GLdouble Double precision floating point number.
GLclampd Double precision floating point number ranging from 0 to 1.

OpenGL’s various preprocessor definitions are prefixed with GL_*. Its functions begin with
gl. For example, a function that triggers the rendering process is declared as void glDrawAr-
rays(GLenum mode, GLint first, GLsizei count)*.

2.6. OpenGL API 12

OpenGL Tutorial, Release 1.0

2.7 The OpenGL Shading language

As we have already learned, programming shaders is one of the core requirements when using
OpenGL. Shader programs are written in a high-level language called The OpenGL Shading
Language (GLSL), which is a language very similar to C. To install a shader program, the
shader source code has to be sent to the graphics card as a string, where the program then needs
to be compiled and linked.

The language specifies various types suited to its needs.

Type Description
void No function return value or empty parameter list.
float Floating point value.
int Signed integer.
bool Boolean value.
vec2, vec3, vec4 Floating point vector.
ivec2, ivec3, ivec4 Signed integer vector.
bvec2, bvec3, bvec4 Boolean vector.
mat2, mat3, mat4 2x2, 3x3, 4x4 floating point matrix.
sampler2D Access a 2D texture.
samplerCube Access cube mapped texture.

All these types may be combined using a C like structure or array.

To access the elements of a vector or a matrix, square brackets “[]” can be used (for example,
vector[index] = value* and matrix[column][row] = value;). In addition to this, the vector’s
named components are accessible by using the field selector operator, ”.” (for example, vector.x
= xValue and vector.xy = vec2(xValue, yValue)). The names (x, y, z, w) are used for positions.
(r, g, b, a) and (s, t, p, q) are used to address color values and texture coordinates respectively.

To define the linkage between different shaders as well as between shaders and the application,
GLSL provides variables with extra functionality by using storage qualifiers. These storage
qualifiers need to be written before the type name during declaration.

2.7. The OpenGL Shading language 13

OpenGL Tutorial, Release 1.0

Stor-
age
Quali-
fier

Description

none (default) Normal variable
const Compile-time constant
at-
tribute

Linkage between a vertex shader and OpenGL for per-vertex data.
As the vertex shader is executed once for every vertex, this
read-only value holds a new value every time it runs. It is used to
pass vertices to the vertex shader for example.

uniform Linkage between a shader and OpenGL for per-rendering data. This
read-only value does not change across the the whole rendering
process. It is used to pass the model-view-projection matrix, for
example as this parameter does not change for one object.

varying Linkage between the vertex shader and the fragment shader for
interpolated data. This variable is used to pass values calculated in
the vertex shader to the fragment shader. For this to work, the
variables need to share the same name in both shaders. As there are
usually a lot of fragments in between a few vertices, the data
calculated by the vertex shader is (by default) interpolated. Such
variables are often used as texture coordinates or lighting
calculations.

To send data from the vertex shader to the fragment shader, the out variable of the vertex shader
and the in variable of the fragment shader need to share the same name. As there are usually a
lot of fragments in between a few vertices, the data calculated by the vertex shader is by default
interpolated in a perspective correct manner. To enforce this behavior, the additional qualifier
smooth* can be written before in. To use linear interpolation, the noperspective qualifier can
be set. Interpolation can be completely disabled by using flat, which results in using the value
output by the first vertex of the primitive for all the fragments in between a primitive.

This kind of variables are commonly called varyings, due to this interpolation and because in
earlier versions of OpenGL this shader-to-shader linkage was achieved using a variable qualifier
called varying* instead of in and out.

Several built-in variables are used for communication with the pipeline. We will use the fol-
lowing:

Vari-
able
Name

Description

vec4
gl_Position

The rasterization step needs to know the position of the transformed
vertex. Therefore, the vertex shader needs to set this variable to the
calculated value.

vec4
gl_FragColor

This variable defines the fragment’s RGBA color that will
eventually be written to the frame buffer. This value can be set by
the fragment shader.

When using multiple variable qualifiers, the order is <storage qualifier> <precision qualifier>
<type> <name>*.

2.7. The OpenGL Shading language 14

OpenGL Tutorial, Release 1.0

Just like in C, every GLSL program’s entry point is the main()* function, but you are also
allowed to declare your own functions. Functions in GLSL work quite differently than those
in C. They do not have a return value. Instead, values are returned using a calling convention
called value-return. For this purpose, GLSL uses parameter qualifiers, which must be written
before the variable type during function declaration. These qualifiers specify if and when values
are exchanged between a function and its caller.

Parameter
qualifier

Description

in (default) On entry, the variable is initialized to the value passed
by the caller.

out On return, the value of this variable is written into the variable
passed by the caller. The variable is not initialized.

inout A combination of in and out. The variable is both initialized and
returned.

There are actually many more qualifiers, but listing all of them is beyond the scope of this
tutorial.

The language also offers control structures such as if*, switch, for, while, and do
while, including break and return. Additionally, in the fragment shader, you can
call discard to exit the fragment shader and have that fragment ignored by the rest
of the pipeline.

GLSL also uses several preprocessor directives. The most notable one that you
should use in all of your programs is, #version* followed by the three digits of the
language version you want to use (e.g. #version 330 for version 3.3). By default,
OpenGL assumes version 1.1, which might not always be what you want.

Although GLSL is very similar to C, there are still some restrictions you should be
aware of:

Functions may not be recursive.

For-loops must have an iteration count that is known at compile time.

There are no pointers.

Array indexing is only possible with constant indices.

Type casting is only possible using constructors (for example, myFloat
= float(myInt);).

Note: The scene you want to render may be so complex that it has thousands of vertices and
millions of fragments. This is why modern graphics cards are equipped with several stream
processing units, each of which executes one vertex shader or fragment shader at a time. Be-
cause all vertices and fragments are processed in parallel, there is no way for the shader to
query the properties of another vertex or fragment.

2.7. The OpenGL Shading language 15

CHAPTER 3

Using OpenGL in your Qt Application

Qt provides a widget called QGLWidget for rendering OpenGL Graphics, which enables you
to easily integrate OpenGL into your Qt application. It is subclassed and used like any other
QWidget and is cross-platform. You usually reimplement the following three virtual methods:

QGLWidget::initializeGL() - sets up the OpenGL rendering context. It is called
once before the QGLWidget::resizeGL() or QGLWidget::paintGL() function is
called for the first time. QGLWidget::resizeGL() - gets called whenever the
QGLWidget is resized, and after initialization. This method is generally used for
setting up the viewport and the projection. QGLWidget::paintGL() - renders the
OpenGL scene. It is comparable to QWidget::paint().

Qt also offers a cross-platform abstraction for shader programs called QGLShaderProgram.
This class facilitates the process of compiling and linking the shader programs as well as
switching between different shaders.

Note: You might need to adapt the versions set in the example source codes to those supported
by your system.

3.1 Hello OpenGL

We are beginning with a small Hello World example that will have our graphics card render
a simple triangle. For this purpose we subclass QGLWidget in order to obtain an OpenGL
rendering context and write a simple vertex and fragment shader.

This example confirms whether we have set up our development environment properly.

16

OpenGL Tutorial, Release 1.0

Note: The source code related to this section is located in examples/hello-opengl/ directory.

First of all, we need to tell qmake to use the QtOpenGL module. So we add:

QT += opengl

The main() function only serves the purpose of instantiating and showing our QGLWidget sub-
class.

int main(int argc, char **argv)
{

QApplication a(argc, argv);

GlWidget w;
w.show();

return a.exec();
}

Our OpenGL widget class is defined as follows:

We want the widget to be a subclass of QGLWidget. Because we might later be using
signals and slots, we invoke the Q_OBJECT macro. Additionally we reimplement QWid-
get::minimumSizeHint() and QWidget::sizeHint() to set reasonable default sizes.

To call the usual OpenGL rendering commands, we reimplement the three virtual functions
GLWidget::initializeGL(), QGLWidget::resizeGL(), and QGLWidget::paintGL().

We also need some member variables. pMatrix is a QMatrix4x4 that keeps the projection part
of the transformation pipeline. To manage the shaders, we use a QGLShaderProgram named,
shaderProgram. vertices is a QVector made of QVector3Ds that stores the triangle’s vertices.
Although the vertex shader will expect us to send homogeneous coordinates, we can use 3D
vectors, because the OpenGL pipeline automatically sets the fourth coordinate to the default
value of 1.

3.1. Hello OpenGL 17

OpenGL Tutorial, Release 1.0

class GlWidget : public QGLWidget
{

Q_OBJECT

public:
GlWidget(QWidget *parent = 0);
~GlWidget();
QSize sizeHint() const;

protected:
void initializeGL();
void resizeGL(int width, int height);
void paintGL();

private:
QMatrix4x4 pMatrix;
QGLShaderProgram shaderProgram;
QVector<QVector3D> vertices;

};

Now that we have defined our widget, we can finally talk about the implementation.

The constructor’s initializer list calls QGLWidget’s constructor passing a QGLFormat object.
This can be used to set the capabilities of the OpenGL rendering context such as double buffer-
ing or multisampling. We are fine with the default values so we could as well have omitted the
QLFormat. Qt tries to acquire a rendering context as close as possible to what we want.

Then we reimplement QWidget::sizeHint() to set a reasonable default size for the widget.

GlWidget::GlWidget(QWidget *parent)
: QGLWidget(QGLFormat(/* Additional format options */), parent)

{
}

GlWidget::~GlWidget()
{
}

QSize GlWidget::sizeHint() const
{

return QSize(640, 480);
}

The QGLWidget::initializeGL() method gets called once when the OpenGL context is created.
We use this function to set the behavior of the rendering context and to build the shader pro-
grams.

If we want to render 3D images, we need to enable depth testing. This is one of the tests
that can be performed during the per-sample-operations stage. It will cause OpenGL to only
display the fragments nearest to the camera when primitives overlap. Although we do not need
this capability as we only want to show a plane triangle, but we can use this setting in our
other examples. If you’ve omitted this statement, you might see objects in the back popping
through objects in the front depending on the order the primitives are rendered. Deactivating
this capability is useful if you want to draw an overlay image on top of the screen.

As an easy way to significantly improve the performance of a 3D application, we also enable

3.1. Hello OpenGL 18

OpenGL Tutorial, Release 1.0

face culling. This tells OpenGL to only render primitives that show their front side. The front
side is defined by the order of the triangle’s vertices. You can tell what side of the triangle you
are seeing by looking at its corners. If the triangle’s corners are specified in a counterclockwise
order, this means that the front of the triangle is the side facing you. For all triangles that are
not facing the camera, the fragment processing stage can be omited.

Then we set the background color using QGLWidget::qglClearColor(). It is a function that calls
OpenGL’s glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf apha) but
has the advantage of allowing any color Qt understands to be passed. The specified color will
then be used in all subsequent calls to glClear(GLbitfield mask).

In the following section we are setting up the shaders. We pass the source codes of the
shaders to the QGLShaderProgram, compile and link them, and bind the program to the current
OpenGL rendering context.

Shader programs need to be supplied as source codes. We can use QGLShaderPro-
gram::addShaderFromSourceFile() to let Qt handle the compilation. This function compiles
the source code as the specified shader type and adds it to the shader program. If an error oc-
curs, the function returns false, and we can access the compilation errors and warnings using
QGLShaderProgram::log(). Errors will be automatically printed to the standard error output if
we run the program in debug mode.

After the compilation, we still need to link the programs using QGLShaderProgram::link(). We
can again check for errors and access the errors and warnings using QGLShaderProgram::log().

The shaders are then ready to be bound to the rendering context using QGLShaderPro-
gram::bind(). Binding the program to the context means enabling it in the graphics pipeline.
After this is done, every vertex that is passed to the graphics pipeline will be processed by
these shaders until we call QGLShaderProgram::release() to disable them or a different shader
program is bound.

Binding and releasing a program can be done several times during the rendering process, which
means several vertex and fragment shaders can be used for different objects in the scene. We
will therefore use these functions in the QGLWidget::paintGL() function.

Last but not least, we set up the triangles’ vertices. Note that we’ve defined the triangle with the
front side pointing to the positive z direction. Having face culling enabled, we can then see this
object if we look at it from viewer positions with a z value greater than this object’s z value.

void GlWidget::initializeGL()
{

glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);

qglClearColor(QColor(Qt::black));

shaderProgram.addShaderFromSourceFile(QGLShader::Vertex, ":/vertexShader.vsh");
shaderProgram.addShaderFromSourceFile(QGLShader::Fragment, ":/fragmentShader.fsh");
shaderProgram.link();

vertices << QVector3D(1, 0, -2) << QVector3D(0, 1, -2) << QVector3D(-1, 0, -2);
}

Now let’s take a look at the shaders we will use in this example.

3.1. Hello OpenGL 19

OpenGL Tutorial, Release 1.0

The vertex shader only calculates the final projection of each vertex by multiplying the vertex
with the model-view-projection matrix.

It needs to read two input variables. The first input is the model-view-projection matrix. It is
a 4x4 matrix that changes once per object and is therefore declared as a uniform mat4. We’ve
named it mvpMatrix. The second variable is the actual vertex that the shader is processing. As
the shader reads a new value every time it is executed, the vertex variable needs to be declared
as an attribute vec4. We’ve named this variable vertex.

In the main() function, we simply calculate the resulting position that is sent to the rasterization
stage using built in matrix vector multiplication.

uniform mat4 mvpMatrix;

in vec4 vertex;

void main(void)
{

gl_Position = mvpMatrix * vertex;
}

The fragment shader simply displays a colored pixel for each fragment it is executed on.

The output of the fragment shader is the value written to the frame buffer. We called this
variable fragColor. It is an instance of vec4 with one element for the red, green, and blue color
value, and one element for the alpha value.

We want to use the same plain color for each pixel. Therefore we declare an input variable
called color, which is a uniform vec4.

The main() function then sets the built in hl_FragColor output variable to this value.

uniform vec4 color;

out vec4 fragColor;

void main(void)
{

fragColor = color;
}

The reimplemented QGLWidget::resizeGL() method is called whenever the widget is resized.
This is why we use this function to set up the projection matrix and the viewport.

After we had checked the widget’s height to prevent a division by zero, we set it to a matrix
that does the perspective projection. Luckily we do not have to calculate it ourselves. We can
use one of the many useful methods of QMatrix4x4, namely QMatrix4x4::perspective(), which
does exactly what we need. This method multiplies its QMatrix4x4 instance with a projection
matrix that is specified by the angle of the field of view, its aspect ratio and the clipping regions
of the near and far planes. The matrix we get using this function resembles the projection of a
camera that is sitting in the origin of the world coordinate system looking towards the world’s
negative z direction with the world’s x axis pointing to the right side and the y axis pointing
upwards. The fact that this function alters its instance explains the need to first initialize it to
an identity matrix (a matrix that doesn’t change the vector when applied as a transformation).

3.1. Hello OpenGL 20

OpenGL Tutorial, Release 1.0

Next we set up the OpenGL viewport. The viewport defines the region of the widget that the
result of the projection is mapped to. This mapping transforms the normalized coordinates
on the aforementioned camera’s film to pixel coordinates within the QGLWidget. To avoid
distortion, the aspect ratio of the viewport should match the aspect ratio of the projection.

void GlWidget::resizeGL(int width, int height)
{

if (height == 0) {
height = 1;

}

pMatrix.setToIdentity();
pMatrix.perspective(60.0, (float) width / (float) height, 0.001, 1000);

glViewport(0, 0, width, height);
}

Finally, we have OpenGL draw the triangle in the QGLWidget::paintGL() method.

The first thing we do is clear the screen using glClear(GLbitfield mask). If this OpenGL func-
tion is called with the GL_COLOR_BUFFER_BIT set, it fills the color buffer with the color set
by glClearColor(GLclampf red, GLclampf green, GLclampf blue, GLclampf aplha). Setting
the GL_DEPTH_BUFFER_BIT tells OpenGL to clear the depth buffer, which is used for the
depth test and stores the distance of rendered pixels. We usually need to clear both buffers, and
therefore, we set both bits.

As we already know, the model-view-projection matrix that is used by the vertex shader is a
concatenation of the model matrix, the view matrix and the projection matrix. Just like for the
projection matrix, we also use the QMatrix4x4 class to handle the other two transformations.
Although we do not want to use them in this basic example, we already introduce them here to
clarify their use. We use them to calculate the model-view-projection matrix, but leave them
initialized to the identity matrix. This means we do not move or rotate the triangle’s frame and
also leave the camera unchanged, located in the origin of the world coordinate system.

The rendering can now be triggered by calling the OpenGL function, glDrawArrays(GLenum
mode, GLint first, GLsizei count). But before we can do that, we need to bind the shaders and
hand over all the uniforms and attributes they need.

In native OpenGL, the programmer would first have to query the id (called location) of each
input variable using the verbatim variable name as it is typed in the shader source code, and
then set its value using this id and a type OpenGL understands. QGLShaderProgram instead
offers a huge set of overloaded functions for this purpose which allow you to address an input
variable using either its location or its name. These functions can also automatically convert
the variable type from Qt types to OpenGL types.

We set the uniform values for both shaders using QGLShaderProgram::setUniformValue() by
passing its name. The vertex shader’s uniform Matrix is calculated by multiplying its three
components. The color of the triangle is set using a QColor instance that is automatically be
converted to a vec4 for us.

To tell OpenGL where to find the stream of vertices, we call QGLShaderPro-
gram::setAttributeArray() and pass the QVector::constData() pointer. Setting attribute arrays
works in the same way as setting uniform values, but there’s one difference: we must explicitly

3.1. Hello OpenGL 21

OpenGL Tutorial, Release 1.0

enable the attribute array using QGLShaderProgram::enableAttributeArray(). If we do not do
this, OpenGL would assume that we’ve assigned a single value instead of an array.

Finally we call glDrawArrays(GLenum mode, GLint first, GLsizei count) to do the rendering.
It is used to start rendering a sequence of geometry primitives using the current configuration.
We pass GL_TRIANGLES as the first parameter to tell OpenGL that each of the three vertices
form a triangle. The second parameter specifies the starting index within the attribute arrays,
and the third parameter is the number of indices to be rendered.

Note that if you later want to draw more than one object, you only need to repeat all of the steps
(except for clearing the screen, of course) you took in this method for each new object.

void GlWidget::paintGL()
{

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

QMatrix4x4 mMatrix;
QMatrix4x4 vMatrix;

shaderProgram.bind();

shaderProgram.setUniformValue("mvpMatrix", pMatrix * vMatrix * mMatrix);

shaderProgram.setUniformValue("color", QColor(Qt::white));

shaderProgram.setAttributeArray("vertex", vertices.constData());
shaderProgram.enableAttributeArray("vertex");

glDrawArrays(GL_TRIANGLES, 0, vertices.size());

shaderProgram.disableAttributeArray("vertex");

shaderProgram.release();
}

You should see a white triangle on black background after compiling and running this program.

3.2 Rendering in 3D

A white triangle on black background is not very interesting and also not 3D, but now that we
have a running basis, we can extend it to create a real 3D application. In this example, we will
render a more complex object and implement the functionality for interactively exploring our
scene.

3.2. Rendering in 3D 22

OpenGL Tutorial, Release 1.0

Note: The source code related to this section is located in examples/rendering-in-3d/ directory.

Just as with any QWidget subclass, we can use Qt’s event system to handle user input. We want
to be able to view the scene in the same way we would explore a globe. By dragging the mouse
across the widget, we want to change the angle that we look from. The distance to the scene
shall change if we turn the mouse’s scroll wheel.

For this functionality, we reimplement QWidget::mousePressEvent(), QWid-
get::mouseMoveEvent(), and QWidget::wheelEvent(). The new member variables alpha,
beta, and distance hold the parameters of the view point, and lastMousePosition helps us track
mouse movement.

class GlWidget : public QGLWidget
{

...

protected:
...

void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);
void wheelEvent(QWheelEvent *event);

private:
...

double alpha;
double beta;
double distance;
QPoint lastMousePosition;

};

The most important new thing in this example is the employment of the view matrix. Again,
we do not calculate this matrix ourselves but use the QMatrix4x4::lookAt() function to obtain

3.2. Rendering in 3D 23

OpenGL Tutorial, Release 1.0

this matrix. This function takes the position of the viewer, the point the viewer is looking at
and a vector that defines the up direction. We want the viewer to look at the world’s origin
and start with a position that is located at a certain distance (distance) along the z axis with the
up direction being the y axis. We then rotate these two vertices using a transformation matrix.
First we rotate them (and their coordinate system) by the alpha angle around their new rotated
x axis, which tilts the camera. Note that you can also illustrate the transformation the other
way around: first we rotate the vertices by the beta angle around the world’s x axis and then we
rotate them by the alpha angle around the world’s y axis.

void GlWidget::paintGL()
{

...
QMatrix4x4 cameraTransformation;
cameraTransformation.rotate(alpha, 0, 1, 0);
cameraTransformation.rotate(beta, 1, 0, 0);

QVector3D cameraPosition = cameraTransformation * QVector3D(0, 0, distance);
QVector3D cameraUpDirection = cameraTransformation * QVector3D(0, 1, 0);

vMatrix.lookAt(cameraPosition, QVector3D(0, 0, 0), cameraUpDirection);
...

}

These three parameters need to be initialized in the constructor and, to account for the user’s
input, we then change them in the corresponding event handlers.

GlWidget::GlWidget(QWidget *parent)
: QGLWidget(QGLFormat(/* Additional format options */), parent)

{
alpha = 25;
beta = -25;
distance = 2.5;

}

In the QWidget::mousePressEvent(), we store the mouse pointer’s initial position to be able to
track the movement. In the QGLWidget::mouseMoveEvent(), we calculate the pointers change
and adapt the angles alpha and beta. As the view point’s parameters have changed, we call
QGLWidget::updateGL() to trigger an update of the rendering context.

void GlWidget::mousePressEvent(QMouseEvent *event)
{

lastMousePosition = event->pos();

event->accept();
}

void GlWidget::mouseMoveEvent(QMouseEvent *event)
{

int deltaX = event->x() - lastMousePosition.x();
int deltaY = event->y() - lastMousePosition.y();

if (event->buttons() & Qt::LeftButton) {
alpha -= deltaX;
while (alpha < 0) {

alpha += 360;
}

3.2. Rendering in 3D 24

OpenGL Tutorial, Release 1.0

while (alpha >= 360) {
alpha -= 360;

}

beta -= deltaY;
if (beta < -90) {

beta = -90;
}
if (beta > 90) {

beta = 90;
}

updateGL();
}

lastMousePosition = event->pos();

event->accept();
}

In the QGLWidget::wheelEvent(), we either increase or decrease the viewers distance by 10%
and update the rendering again.

void GlWidget::wheelEvent(QWheelEvent *event)
{

int delta = event->delta();

if (event->orientation() == Qt::Vertical) {
if (delta < 0) {

distance *= 1.1;
} else if (delta > 0) {

distance *= 0.9;
}

updateGL();
}

event->accept();
}

In order to finish this example, we only need to change our list of vertices to form a cube.

void GlWidget::initializeGL()
{

...
vertices << QVector3D(-0.5, -0.5, 0.5) << QVector3D(0.5, -0.5, 0.5) << QVector3D(0.5, 0.5, 0.5) // Front

<< QVector3D(0.5, 0.5, 0.5) << QVector3D(-0.5, 0.5, 0.5) << QVector3D(-0.5, -0.5, 0.5)
<< QVector3D(0.5, -0.5, -0.5) << QVector3D(-0.5, -0.5, -0.5) << QVector3D(-0.5, 0.5, -0.5) // Back
<< QVector3D(-0.5, 0.5, -0.5) << QVector3D(0.5, 0.5, -0.5) << QVector3D(0.5, -0.5, -0.5)
<< QVector3D(-0.5, -0.5, -0.5) << QVector3D(-0.5, -0.5, 0.5) << QVector3D(-0.5, 0.5, 0.5) // Left
<< QVector3D(-0.5, 0.5, 0.5) << QVector3D(-0.5, 0.5, -0.5) << QVector3D(-0.5, -0.5, -0.5)
<< QVector3D(0.5, -0.5, 0.5) << QVector3D(0.5, -0.5, -0.5) << QVector3D(0.5, 0.5, -0.5) // Right
<< QVector3D(0.5, 0.5, -0.5) << QVector3D(0.5, 0.5, 0.5) << QVector3D(0.5, -0.5, 0.5)
<< QVector3D(-0.5, 0.5, 0.5) << QVector3D(0.5, 0.5, 0.5) << QVector3D(0.5, 0.5, -0.5) // Top
<< QVector3D(0.5, 0.5, -0.5) << QVector3D(-0.5, 0.5, -0.5) << QVector3D(-0.5, 0.5, 0.5)
<< QVector3D(-0.5, -0.5, -0.5) << QVector3D(0.5, -0.5, -0.5) << QVector3D(0.5, -0.5, 0.5) // Bottom
<< QVector3D(0.5, -0.5, 0.5) << QVector3D(-0.5, -0.5, 0.5) << QVector3D(-0.5, -0.5, -0.5);

3.2. Rendering in 3D 25

OpenGL Tutorial, Release 1.0

}

If you now compile and run this program, you will see a white cube that can be rotated using
the mouse. As each of its six sides is painted in the same plane color, depth is not visible. We
will work on this in the next example.

3.3 Coloring

In this example, we want to color each side of the cube in different colors to enhance the illusion
of three dimensionality. To archive this, we will extend our shaders in a way that allows us to
specify a single color for each vertex and use the interpolation of varyings to generate the
fragment’s colors. This example shows you how to communicate data from the vertex shader
over to the fragment shader.

Note: The source code related to this section is located in the examples/coloring/ directory

To tell the shaders about the colors, we specify a color value for each vertex as an attribute
array for the vertex shader. So on each run of the shader, it will read a new value for both the
vertex attribute and the color attribute.

As the fragment’s color eventually has to be set in the fragment shader and not in the vertex
shader, we pass the color value over to it. To do this, we need to declare an equally named
varying in both shaders. We called this varying varyingColor. If the fragment shader is now
run for each fragment between the three vertices of a triangle, the value read by the shader is
calculated by an interpolation of the three corners’ values. This means that if we specify the
same color for the three vertices of a triangle, OpenGL will paint a plane colored triangle. If
we specify different colors, OpenGL will smoothly blend between those values.

In the vertex shader’s main function, we only need to set the varying to the color value.

3.3. Coloring 26

OpenGL Tutorial, Release 1.0

uniform mat4 mvpMatrix;

in vec4 vertex;
in vec4 color;

out vec4 varyingColor;

void main(void)
{

varyingColor = color;
gl_Position = mvpMatrix * vertex;

}

In the fragment shader’s main function, we set the gl_FragColor variable to the color received.

in vec4 varyingColor;

out vec4 fragColor;

void main(void)
{

fragColor = varyingColor;
}

Of course we still need to use a new structure to store the color values and send them to the
shaders in the QGLWidget::paintGL() method. But this should be very straightforward as we
have already done all of this for the vertices attribute array in just the same manner.

// glwidget.h

class GlWidget : public QGLWidget
{

...

private:
...

QVector<QVector3D> colors;
};

// glwidget.cpp

void GlWidget::paintGL()
{

...

shaderProgram.bind();

shaderProgram.setUniformValue("mvpMatrix", pMatrix * vMatrix * mMatrix);

shaderProgram.setAttributeArray("vertex", vertices.constData());
shaderProgram.enableAttributeArray("vertex");

shaderProgram.setAttributeArray("color", colors.constData());
shaderProgram.enableAttributeArray("color");

glDrawArrays(GL_TRIANGLES, 0, vertices.size());

3.3. Coloring 27

OpenGL Tutorial, Release 1.0

shaderProgram.disableAttributeArray("vertex");

shaderProgram.disableAttributeArray("color");

shaderProgram.release();
}

There is only one little inconvenience when switching from a color uniform to a color attribute
array. Unfortunately QGLShaderProgram::setAttributeArray() does not support the QColor
type, so we need to store the colors as a QVector3D (or a QVector4D, if you want to set the
alpha value to change the opacity). Valid color values range from 0 to 1. As we want to color
each of the cube’s faces in a plain color, we set the color value of each face’s vertices to the
same value.

void GlWidget::initializeGL()
{

...

colors << QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0) // Front
<< QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0)
<< QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0) // Back
<< QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0)
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0) // Left
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0)
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0) // Right
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0)
<< QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1) // Top
<< QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1)
<< QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1) // Bottom
<< QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1);

}

Our cube now has its six sides colored differently.

3.4 Texture Mapping

Texture mapping is a very important concept in 3D computer graphics. It is the application of
images on top of a model’s surfaces and is essential for creating a nice 3D scene.

You can do more with textures than just mapping them to a surface. Essentially a texture is a
two dimensional array containing color values so not only can you pass colors to your shaders,
but an array of any data you want. However, in this example we will use a classic 2D texture to
map an image on top of the cube we created in the previous examples.

3.4. Texture Mapping 28

OpenGL Tutorial, Release 1.0

Note: The source code related to this section is located in the examples/texture-mapping/
directory

In order to map a texture to a primitive, we have to specify so-called texture coordinates* that
tell OpenGL which image coordinate is to be pinned to which vertex. Texture coordinates are
instances of vec2 that are normalized to a range between 0 and 1. The origin of the texture
coordinate system is in the lower left of an image, having the first axis pointing to the right side
and the second axis pointing upwards (i.e. the lower left corner of an image is at (0, 0) and the
upper right corner is at (1, 1)). Coordinate values higher than 1 are also allowed, causing the
texture to wrap around by default.

The textures themselves are OpenGL objects stored in the graphics card’s memory. They are
created using glGenTextures(GLsizei n, GLuint texture) and deleted again with a call to glDel-
ereTextures(GLsizei n, const GLuint *texture). To identify textures, each texture is assigned
a texture ID during its creation. As with shader programs, they must be bound to glBindTex-
ture(GLenum target, GLuint texture) before they can be configured and filled with data. We
can use Qt’s QGLWidget::bindTexture() to create the texture object. Normally we would have
to make sure that the image data is in a particular format, according to the configuration of the
texture object, but luckily QGLWidget::bindTexture() can take care of this.

OpenGL allows us to have several textures accessible to the shaders at the same time. For this
purpose, OpenGL uses so-called texture units*. So before we can use a texture, we need to bind
it to one of the texture units identified by the enum GL_TEXTUREi (with i ranging from 0 to
GL_MAX_COMBINED_TEXTURE_UNITS -1). To do this, we call glActiveTexture(GLenum
texture) and bind the texture using glBindTexture(GLenum target, GLuint texture). To add
new textures or modify existing ones, we have to call glBindTexture(GLenum target, GLuint
texture), overwrites the the current active texture unit. So you should set the active texture unit
to an invalid unit after setting it by calling glActiveTexture(0). This way several texture units
can be configured at the same time. Note that texture units must be used in an ascending order
beginning with GL_TEXTURE0.

3.4. Texture Mapping 29

OpenGL Tutorial, Release 1.0

To access a texture in a shader to actually render it, we use the texture2D(sampler2D sampler,
vec2 coord) function to query the color value at a certain texture coordinate. This function
reads two parameters. The first parameter is of the type sampler2D and it refers to a texture
unit. The second parameter is the texture coordinate that we want to access. To read from the
texture unit i denoted by the enum GL_TEXTUREi, we have to pass the GLuint i as the uniform
value.

With all of this theory we are now able to make our cube textured.

We replace the vec4 color attribute and the corresponding varying with a vec2 variable for the
texture coordinates, and forward this value to the fragment shader.

uniform mat4 mvpMatrix;

in vec4 vertex;
in vec2 textureCoordinate;

out vec2 varyingTextureCoordinate;

void main(void)
{

varyingTextureCoordinate = textureCoordinate;
gl_Position = mvpMatrix * vertex;

}

In the fragment shader, we use texture2D(sampler2D sampler, vec2 coord) to look up the right
color value. The uniform texture of the type sampler2D chooses the texture unit and we use the
interpolated values coming from the vertex shader for the texture coordinates.

uniform sampler2D texture;

in vec2 varyingTextureCoordinate;

out vec4 fragColor;

void main(void)
{

fragColor = texture2D(texture, varyingTextureCoordinate);
}

In the GlWidget class declaration, we replace the previously used colors member with a QVector
made of QVector2Ds for the texture coordinates, and add a member variable to hold the texture
object ID.

class GlWidget : public QGLWidget
{

...

private:
...

QVector<QVector2D> textureCoordinates;
GLuint texture;
...

};

3.4. Texture Mapping 30

OpenGL Tutorial, Release 1.0

In the QGLWidget::initializeGL() reimplementation, we set up the texture coordinates and also
create the texture object. Each side will be covered with the whole square image that is con-
tained in our resource file.

void GlWidget::initializeGL()
{

...
textureCoordinates << QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Front

<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Back
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Left
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Right
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Top
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Bottom
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0);

texture = bindTexture(QPixmap(":/texture.png"));
}

In the QGLWidget::paintGL() method, we set the fragment shader’s sampler2D uniform to the
first texture unit. Then we activate that unit, bind our texture object to it and after that deactivate
it again to prevent us from accidentally overwriting this setting. And instead of passing the color
attribute array, we pass the array containing the texture coordinates.

void GlWidget::paintGL()
{

...

shaderProgram.bind();

shaderProgram.setUniformValue("mvpMatrix", pMatrix * vMatrix * mMatrix);

shaderProgram.setUniformValue("texture", 0);

//glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
//glActiveTexture(0);

shaderProgram.setAttributeArray("vertex", vertices.constData());
shaderProgram.enableAttributeArray("vertex");

shaderProgram.setAttributeArray("textureCoordinate", textureCoordinates.constData());
shaderProgram.enableAttributeArray("textureCoordinate");

glDrawArrays(GL_TRIANGLES, 0, vertices.size());

shaderProgram.disableAttributeArray("vertex");

shaderProgram.disableAttributeArray("textureCoordinate");

shaderProgram.release();
}

3.4. Texture Mapping 31

OpenGL Tutorial, Release 1.0

Our cube is now textured.

Note: The Windows OpenGL header file only includes functionality up to OpenGL version
1.1 and assumes that the programmer will obtain additional functionality on his own. This
includes OpenGL API function calls as well as enums. The reason is that, because different
OpenGL libraries exist, the programmer should request the library’s function entry points at
runtime.

Qt only defines the functionality required by its own OpenGL-related classes. glActiveTex-
ture(GLenum texture) as well as the GL_TEXTUREi enums do not belong to this subset.

Several utility libraries exist to ease the definition of these functions (e.g. GLEW, GLEE, etc).
We will define glActiveTexture(GLenum texture) and GL_TEXTUREi manually.

First we include the glext.h header file to set the missing enums and a few typedefs that help
us make the code readable (as the version shipped with your compiler might be outdated, you
may need to get the latest version from the OpenGL homepage1). Next we declare the function
pointer, which we will use to call glActiveTexture(GLenum texture) using the included typedefs.
To avoid confusing the linker, we use a different name than glActiveTexture and define a pre-
processor macro to replaces calls to glActiveTexture(GLenum texture) with our own function:

#ifdef WIN32
#include <GL/glext.h>
PFNGLACTIVETEXTUREPROC pGlActiveTexture = NULL;
#define glActiveTexture pGlActiveTexture

#endif //WIN32

In the GlWidget::initializeGL() function, we request this pointer using PROC WINAPI wglGet-
ProcAddress(LPCSTR lpszProc). This function reads the OpenGL API function’s name and
returns a pointer which we need to cast to the right type:

void GlWidget::initializeGL()
{

...

#ifdef WIN32
glActiveTexture = (PFNGLACTIVETEXTUREPROC) wglGetProcAddress((LPCSTR) "glActiveTexture");

#endif
...

}

glActiveTexture() and GL_TEXTUREi can then be used on Windows.

3.5 Lighting

The ability to write your own shader programs gives you the power to set up the kind of lighting
effect that best suits your needs. This may range from very basic and time saving approaches
to high quality ray tracing algorithms.

1http://www.opengl.org

3.5. Lighting 32

http://www.opengl.org

OpenGL Tutorial, Release 1.0

In this chapter, we will implement a technique called Phong shading*, which is a popular
baseline shading method for many rendering applications. For each pixel on the surface of an
object, we will calculate the color intensity based on the position and color of the light source
as well as the object’s texture and its material properties.

To show the results, we will display the cube with a light source circling above it. The light
source will be marked by a pyramid, which we will render using the per-vertex color shader of
one of the previous examples. So in this example, you will also see how to render a scene with
multiple objects and different shader programs.

Note: The source code related to this section is located in the examples/lighting/ directory

Because we use two different objects and two different shader programs, we added prefixes
to the names. The cube is rendered using the lightingShaderProgram, for which we need an
additional storage that keeps the surface normal of each vertex (i.e. the vector, that is perpen-
dicular to the surface and has the size 1). The spotlight, on the other hand, is rendered using
the coloringShaderProgram, which consists of a shader we developed earlier in this tutorial.

To track the position of the light source, we introduced a new member variable that holds its
rotation. This value is periodically increased in the timeout() slot.

class GlWidget : public QGLWidget
{

...

private:
QGLShaderProgram lightingShaderProgram;
QVector<QVector3D> cubeVertices;
QVector<QVector3D> cubeNormals;
QVector<QVector2D> cubeTextureCoordinates;
GLuint cubeTexture;
QGLShaderProgram coloringShaderProgram;
QVector<QVector3D> spotlightVertices;

3.5. Lighting 33

OpenGL Tutorial, Release 1.0

QVector<QVector3D> spotlightColors;
double lightAngle;

...

private Q_SLOTS:
void timeout();

};

The Phong reflection model assumes that the light reflected off an object (i.e. what you actually
see) consists of three components: diffuse reflection of rough surfaces, specular highlights of
glossy surfaces, and an ambient term that sums up the small amounts of light that get scattered
about the entire scene.

For each light source in the scene, we define id and is as the intensities (RGB values) of the
diffuse and the specular components. ia is defined as the ambient lighting component.

For each kind of surface (whether glossy or flat), we define the following parameters: kd and
ks set the ratio of reflection of the diffuse and specular component, ka sets the ratio of the
reflection of the ambient term respectively and α is a shininess constant that controls the size
of the specular highlights.

The equation for computing the illumination of each surface point (fragment) is:

L̂m is the normalized direction vector pointing from the fragment to the light source, N̂ is the
surface normal of this fragment, R̂m is the direction of the light reflected at this point, and V̂
points from the fragment towards the viewer of the scene.

To obtain the vectors mentioned above, we calculate them for each vertex in the vertex shader
and tell OpenGL to pass them as interpolated values to the fragment shader. In the fragment
shader, we finally set the illumination of each point and combine it with the color value of the
texture.

So in addition to passing vertex positions and the model-view-projection matrix to get the
fragment’s position, we also need to pass the surface normal of each vertex. To calculate the
transformed cube’s L̂m and V̂ , we need to know the model-view part of the transformation. To
calculate the transformed N̂ , we need to apply a matrix that transforms the surface normals.
This extra matrix is needed because we only want the normals to be rotated according to the
model-view matrix, but not to be translated.

This is the vertex shader’s source code:

uniform mat4 mvpMatrix;
uniform mat4 mvMatrix;
uniform mat3 normalMatrix;
uniform vec3 lightPosition;

in vec4 vertex;
in vec3 normal;
in vec2 textureCoordinate;

out vec3 varyingNormal;
out vec3 varyingLightDirection;

3.5. Lighting 34

OpenGL Tutorial, Release 1.0

out vec3 varyingViewerDirection;
out vec2 varyingTextureCoordinate;

void main(void)
{

vec4 eyeVertex = mvMatrix * vertex;
eyeVertex /= eyeVertex.w;
varyingNormal = normalMatrix * normal;
varyingLightDirection = lightPosition - eyeVertex.xyz;
varyingViewerDirection = -eyeVertex.xyz;
varyingTextureCoordinate = textureCoordinate;
gl_Position = mvpMatrix * vertex;

}

The fragment shader is supplied with the light source’s and the material’s properties and the
geometry data calculated by the vertex shader. It then sets the fragment’s color value according
to the above formula.

This is the fragment shaders source code:

uniform vec4 ambientColor;
uniform vec4 diffuseColor;
uniform vec4 specularColor;
uniform float ambientReflection;
uniform float diffuseReflection;
uniform float specularReflection;
uniform float shininess;
uniform sampler2D texture;

in vec3 varyingNormal;
in vec3 varyingLightDirection;
in vec3 varyingViewerDirection;
in vec2 varyingTextureCoordinate;

out vec4 fragColor;

void main(void)
{

vec3 normal = normalize(varyingNormal);
vec3 lightDirection = normalize(varyingLightDirection);
vec3 viewerDirection = normalize(varyingViewerDirection);
vec4 ambientIllumination = ambientReflection * ambientColor;
vec4 diffuseIllumination = diffuseReflection * max(0.0, dot(lightDirection, normal)) * diffuseColor;
vec4 specularIllumination = specularReflection * pow(max(0.0,

dot(-reflect(lightDirection, normal), viewerDirection)
), shininess) * specularColor;

fragColor = texture2D(texture,
varyingTextureCoordinate) * (ambientIllumination + diffuseIllumination
) + specularIllumination;

}

In the GLWidget::initiliazeGL() method, we set up both shaders and prepare the attribute arrays
of the cube and the spotlight. The only thing new here is the QVector made of QVector3Ds that
stores the surface normal of each of the cube’s vertices.

3.5. Lighting 35

OpenGL Tutorial, Release 1.0

void GlWidget::initializeGL()
{

...

lightingShaderProgram.addShaderFromSourceFile(QGLShader::Vertex, ":/lightingVertexShader.vsh");
lightingShaderProgram.addShaderFromSourceFile(QGLShader::Fragment, ":/lightingFragmentShader.fsh");
lightingShaderProgram.link();

cubeVertices << QVector3D(-0.5, -0.5, 0.5) << QVector3D(0.5, -0.5, 0.5) << QVector3D(0.5, 0.5, 0.5) // Front
<< QVector3D(0.5, 0.5, 0.5) << QVector3D(-0.5, 0.5, 0.5) << QVector3D(-0.5, -0.5, 0.5)
<< QVector3D(0.5, -0.5, -0.5) << QVector3D(-0.5, -0.5, -0.5) << QVector3D(-0.5, 0.5, -0.5) // Back
<< QVector3D(-0.5, 0.5, -0.5) << QVector3D(0.5, 0.5, -0.5) << QVector3D(0.5, -0.5, -0.5)
<< QVector3D(-0.5, -0.5, -0.5) << QVector3D(-0.5, -0.5, 0.5) << QVector3D(-0.5, 0.5, 0.5) // Left
<< QVector3D(-0.5, 0.5, 0.5) << QVector3D(-0.5, 0.5, -0.5) << QVector3D(-0.5, -0.5, -0.5)
<< QVector3D(0.5, -0.5, 0.5) << QVector3D(0.5, -0.5, -0.5) << QVector3D(0.5, 0.5, -0.5) // Right
<< QVector3D(0.5, 0.5, -0.5) << QVector3D(0.5, 0.5, 0.5) << QVector3D(0.5, -0.5, 0.5)
<< QVector3D(-0.5, 0.5, 0.5) << QVector3D(0.5, 0.5, 0.5) << QVector3D(0.5, 0.5, -0.5) // Top
<< QVector3D(0.5, 0.5, -0.5) << QVector3D(-0.5, 0.5, -0.5) << QVector3D(-0.5, 0.5, 0.5)
<< QVector3D(-0.5, -0.5, -0.5) << QVector3D(0.5, -0.5, -0.5) << QVector3D(0.5, -0.5, 0.5) // Bottom
<< QVector3D(0.5, -0.5, 0.5) << QVector3D(-0.5, -0.5, 0.5) << QVector3D(-0.5, -0.5, -0.5);

cubeNormals << QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1) // Front
<< QVector3D(0, 0, 1) << QVector3D(0, 0, 1) << QVector3D(0, 0, 1)
<< QVector3D(0, 0, -1) << QVector3D(0, 0, -1) << QVector3D(0, 0, -1) // Back
<< QVector3D(0, 0, -1) << QVector3D(0, 0, -1) << QVector3D(0, 0, -1)
<< QVector3D(-1, 0, 0) << QVector3D(-1, 0, 0) << QVector3D(-1, 0, 0) // Left
<< QVector3D(-1, 0, 0) << QVector3D(-1, 0, 0) << QVector3D(-1, 0, 0)
<< QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0) // Right
<< QVector3D(1, 0, 0) << QVector3D(1, 0, 0) << QVector3D(1, 0, 0)
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0) // Top
<< QVector3D(0, 1, 0) << QVector3D(0, 1, 0) << QVector3D(0, 1, 0)
<< QVector3D(0, -1, 0) << QVector3D(0, -1, 0) << QVector3D(0, -1, 0) // Bottom
<< QVector3D(0, -1, 0) << QVector3D(0, -1, 0) << QVector3D(0, -1, 0);

cubeTextureCoordinates << QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Front
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Back
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Left
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Right
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Top
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0)
<< QVector2D(0, 0) << QVector2D(1, 0) << QVector2D(1, 1) // Bottom
<< QVector2D(1, 1) << QVector2D(0, 1) << QVector2D(0, 0);

cubeTexture = bindTexture(QPixmap(":/cubeTexture.png"));

coloringShaderProgram.addShaderFromSourceFile(QGLShader::Vertex, ":/coloringVertexShader.vsh");
coloringShaderProgram.addShaderFromSourceFile(QGLShader::Fragment, ":/coloringFragmentShader.fsh");
coloringShaderProgram.link();

spotlightVertices << QVector3D(0, 1, 0) << QVector3D(-0.5, 0, 0.5) << QVector3D(0.5, 0, 0.5) // Front
<< QVector3D(0, 1, 0) << QVector3D(0.5, 0, -0.5) << QVector3D(-0.5, 0, -0.5) // Back
<< QVector3D(0, 1, 0) << QVector3D(-0.5, 0, -0.5) << QVector3D(-0.5, 0, 0.5) // Left
<< QVector3D(0, 1, 0) << QVector3D(0.5, 0, 0.5) << QVector3D(0.5, 0, -0.5) // Right
<< QVector3D(-0.5, 0, -0.5) << QVector3D(0.5, 0, -0.5) << QVector3D(0.5, 0, 0.5) // Bottom
<< QVector3D(0.5, 0, 0.5) << QVector3D(-0.5, 0, 0.5) << QVector3D(-0.5, 0, -0.5);

3.5. Lighting 36

OpenGL Tutorial, Release 1.0

spotlightColors << QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) // Front
<< QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) // Back
<< QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) // Left
<< QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) << QVector3D(0.2, 0.2, 0.2) // Right
<< QVector3D(1, 1, 1) << QVector3D(1, 1, 1) << QVector3D(1, 1, 1) // Bottom
<< QVector3D(1, 1, 1) << QVector3D(1, 1, 1) << QVector3D(1, 1, 1);

}

After clearing the screen and calculating the view matrix (which is the same for both objects)
in the GlWidget::painGL() method, we first render the cube using the lighting shaders and then
we render the spotlight using the coloring shader.

Because we want to keep the cube’s origin aligned with the world’s origin, we leave the model
matrix (mMatrix) set to an identity matrix. Then we calculate the model-view matrix, which we
also need to send to the lighting vertex shader, and extract the normal matrix with Qt’s QMa-
trix4x4::normal() method. As we have already stated, this matrix will transform the surface
normals of our cube from model coordinates into viewer coordinates. After that, we calculate
the position of the light source in world coordinates according to the angle.

We can now render the cube. We bind the lighting shader program, set the uniforms and
texture units, set and enable the attribute arrays, trigger the rendering, and afterwards disable
the attribute arrays and release the program. For the light source’s and the material’s properties,
we set values that give us a glossy looking surface.

Next we render the spotlight.

Because we want to move the spotlight to the same place as the light source, we need to modify
its model matrix. First we restore the identity matrix (actually we did not modify the model
matrix before so it still is set to the identity matrix anyway). Then we move the spotlight to the
light sources position. Now we still want to rotate it as it looks nicer if it faces our cube. We
therefore apply two rotation matrices on top. Because the pyramid that represents our lightspot
is still too big to fit into our scene nicely, we scale it down to a tenth of its original size.

Now we follow the usual rendering procedure again, this time using the coloringShaderPro-
gram and the spotlight data. Thanks to depth testing, the new object will be integrated seam-
lessly into our existing scene.

void GlWidget::paintGL()
{

...

mMatrix.setToIdentity();

QMatrix4x4 mvMatrix;
mvMatrix = vMatrix * mMatrix;

QMatrix3x3 normalMatrix;
normalMatrix = mvMatrix.normalMatrix();

QMatrix4x4 lightTransformation;
lightTransformation.rotate(lightAngle, 0, 1, 0);

QVector3D lightPosition = lightTransformation * QVector3D(0, 1, 1);

lightingShaderProgram.bind();

3.5. Lighting 37

OpenGL Tutorial, Release 1.0

lightingShaderProgram.setUniformValue("mvpMatrix", pMatrix * mvMatrix);
lightingShaderProgram.setUniformValue("mvMatrix", mvMatrix);
lightingShaderProgram.setUniformValue("normalMatrix", normalMatrix);
lightingShaderProgram.setUniformValue("lightPosition", vMatrix * lightPosition);

lightingShaderProgram.setUniformValue("ambientColor", QColor(32, 32, 32));
lightingShaderProgram.setUniformValue("diffuseColor", QColor(128, 128, 128));
lightingShaderProgram.setUniformValue("specularColor", QColor(255, 255, 255));
lightingShaderProgram.setUniformValue("ambientReflection", (GLfloat) 1.0);
lightingShaderProgram.setUniformValue("diffuseReflection", (GLfloat) 1.0);
lightingShaderProgram.setUniformValue("specularReflection", (GLfloat) 1.0);
lightingShaderProgram.setUniformValue("shininess", (GLfloat) 100.0);
lightingShaderProgram.setUniformValue("texture", 0);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, cubeTexture);
glActiveTexture(0);

lightingShaderProgram.setAttributeArray("vertex", cubeVertices.constData());
lightingShaderProgram.enableAttributeArray("vertex");
lightingShaderProgram.setAttributeArray("normal", cubeNormals.constData());
lightingShaderProgram.enableAttributeArray("normal");
lightingShaderProgram.setAttributeArray("textureCoordinate", cubeTextureCoordinates.constData());
lightingShaderProgram.enableAttributeArray("textureCoordinate");

glDrawArrays(GL_TRIANGLES, 0, cubeVertices.size());

lightingShaderProgram.disableAttributeArray("vertex");
lightingShaderProgram.disableAttributeArray("normal");
lightingShaderProgram.disableAttributeArray("textureCoordinate");

lightingShaderProgram.release();

mMatrix.setToIdentity();
mMatrix.translate(lightPosition);
mMatrix.rotate(lightAngle, 0, 1, 0);
mMatrix.rotate(45, 1, 0, 0);
mMatrix.scale(0.1);

coloringShaderProgram.bind();

coloringShaderProgram.setUniformValue("mvpMatrix", pMatrix * vMatrix * mMatrix);

coloringShaderProgram.setAttributeArray("vertex", spotlightVertices.constData());
coloringShaderProgram.enableAttributeArray("vertex");

coloringShaderProgram.setAttributeArray("color", spotlightColors.constData());
coloringShaderProgram.enableAttributeArray("color");

glDrawArrays(GL_TRIANGLES, 0, spotlightVertices.size());

coloringShaderProgram.disableAttributeArray("vertex");

coloringShaderProgram.disableAttributeArray("color");

coloringShaderProgram.release();
}

3.5. Lighting 38

OpenGL Tutorial, Release 1.0

The last thing left to do is to initialize the light source’s position and set up the timer. We tell
the timer to periodically invoke the timout() slot.

GlWidget::GlWidget(QWidget *parent)
: QGLWidget(QGLFormat(/* Additional format options */), parent)

{
...

lightAngle = 0;

QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(timeout()));
timer->start(20);

}

In this slot we update the angle of the light source’s circulation and update the screen. We also
remove the calls to QGLWidget::updateGL() in the event handlers.

void GlWidget::timeout()
{

lightAngle += 1;
while (lightAngle >= 360) {

lightAngle -= 360;
}

updateGL();
}

Now we are finished with the implementation. If you build and run the program, you will see a
lit, textured cube.

3.6 Buffer Object

Up till now, we have transferred all the objects’ per-vertex data from the computer’s RAM via
the memory bus and the AGP bus to the graphics card whenever we wanted to re-render the
scene. Obviously this is not very efficient and imposes a significant performance penalty -
especially when handling large datasets. In this example, we will solve this problem by adding
vertex buffer objects to the lighting example.

Note: The source code related to this section is located in examples/buffer-objects/ directory

Buffer objects are general purpose arrays of data residing in the graphics card’s memory. After
we have allocated its space and filled it with data, we can repeatedly use it in different stages of
the rendering pipeline. This means reading from and writing to it. We can also move this data
around. All of these operations won’t require anything from the CPU.

There are different types of buffer objects for different purposes. The most commonly used
buffer object is the vertex buffer object, which serves as a source of vertex arrays.

In this example, we intend to use one vertex buffer per object (i.e. one vertex buffer for the
cube and one vertex buffer for the spotlight), in which the attributes are densely packed next to

3.6. Buffer Object 39

OpenGL Tutorial, Release 1.0

each other in memory. We are not limited to using one single vertex buffer for all the attributes.
Alternatively we could also use one vertex buffer for each vertex or a combination of both.
Note that we can also mix the usage of vertex arrays and vertex buffers in one rendering.

Instead of using OpenGL API calls, we use the QGLBuffer class to manage the vertex buffers
of the cube and the spotlight. The type of the buffer object can be set in the constructor. It
defaults to being a vertex buffer.

We add a QGLBuffer member for each object, remove the vertex arrays we used in the previous
version of the lighting example and add variables to hold the number of vertices, which will
be necessary to tell OpenGL the number of vertices to render in the GlWidget::updateGL()
method.

class GlWidget : public QGLWidget
{

private:
...

QGLBuffer cubeBuffer;
...

int numSpotlightVertices;
QGLBuffer spotlightBuffer;
...

};

Buffer objects are OpenGL objects just like the shader programs and textures which we have
already used in the preceding examples. So the syntax for handling them is quite similar.

In the GlWidget::initializeGL() method, we first need to create the buffer object. This is done
by calling QGLBuffer::create(). It will request a free buffer object id (similar to a variable
name) from the graphics card.

Then, as with textures, we need to bind it to the rendering context to make it active using
QGLBuffer::bind().

After this, we call QGLBuffer::allocate() to allocate the amount of memory we need to store
our vertices, normals, and texture coordinates. This function expects the number of bytes to
reserve as a parameter. Using this method, we could also directly specify a pointer to the data
which we want to be copied, but we want to arrange several datasets one after the other so we
do the copying in the next few lines. Allocating memory also makes us responsible for freeing
this space when it’s not needed anymore by using QGLBuffer::destroy(). Qt will do this for us
when the QGLBuffer object is destroyed.

Uploading data to the graphics card is done by using QGLBuffer::write(). It reads an offset (in
bytes) from the beginning of the buffer object, a pointer to the data in the system memory, which
is to be read from, and the number of bytes to copy. First we copy the cubes vertices. Then
we append its surface normals and the texture coordinates. Note that because OpenGL uses
GLfloats for its computations, we need to consider the size of the c {GLfloat} type when speci-
fying memory offsets and sizes. Then we unbind the buffer object using QGLBuffer::release().

We do the same for the spotlight object.

3.6. Buffer Object 40

OpenGL Tutorial, Release 1.0

void GlWidget::initializeGL()
{

...

numCubeVertices = 36;

cubeBuffer.create();
cubeBuffer.bind();
cubeBuffer.allocate(numCubeVertices * (3 + 3 + 2) * sizeof(GLfloat));

int offset = 0;
cubeBuffer.write(offset, cubeVertices.constData(), numCubeVertices * 3 * sizeof(GLfloat));
offset += numCubeVertices * 3 * sizeof(GLfloat);
cubeBuffer.write(offset, cubeNormals.constData(), numCubeVertices * 3 * sizeof(GLfloat));
offset += numCubeVertices * 3 * sizeof(GLfloat);
cubeBuffer.write(offset, cubeTextureCoordinates.constData(), numCubeVertices * 2 * sizeof(GLfloat));

cubeBuffer.release();
...

numSpotlightVertices = 18;

spotlightBuffer.create();
spotlightBuffer.bind();
spotlightBuffer.allocate(numSpotlightVertices * (3 + 3) * sizeof(GLfloat));

offset = 0;
cubeBuffer.write(offset, spotlightVertices.constData(), numSpotlightVertices * 3 * sizeof(GLfloat));
offset += numSpotlightVertices * 3 * sizeof(GLfloat);
cubeBuffer.write(offset, spotlightColors.constData(), numSpotlightVertices * 3 * sizeof(GLfloat));

spotlightBuffer.release();
}

Just in case you’re interested, this is how the creation of buffer objects would work if we did
not use Qt’s QGLBuffer class for this purpose: We would call void glGenBuffers(GLsizei n,
GLuint buffers) to request n numbers of buffer objects with their ids stored in buffers. Next we
would bind the buffer using void glBindBuffer(enum target, uint bufferName), where we would
also specify the buffer’s type. Then we would use void glBufferData(enum target, sizeiptr size,
const void *data, enum usage) to upload the data. The enum called usage specifies the way the
buffer is used by the main program running on the CPU (for example, write-only, read-only,
and copy-only) as well as the frequency of the buffer’s usage, in order to support optimizations.
void glDeleteBuffers(GLsizei n, const GLuint *buffers) is the OpenGL API function to delete
buffers and free their memory.

To have OpenGL use our vertex buffer objects as the source of its vertex attributes, we need to
set them differently in the GlWidget::updateGL() method.

Instead of calling QGLShaderProgram::setAttributeArray(), we need to call QGLShaderPro-
gram::setAttributeBuffer() with the QGLBuffer instance bound to the rendering context. The
parameters of QGLShaderProgram::setAttributeBuffer() are the same as those of QGLShader-
Program::setAttributeArray(). We only need to adapt the offset parameter to uniquely identify
the location of the data because we now use one big chunk of memory for every attribute instead
of one array for each of them.

3.6. Buffer Object 41

OpenGL Tutorial, Release 1.0

void GlWidget::paintGL()
{

...

cubeBuffer.bind();
int offset = 0;
lightingShaderProgram.setAttributeBuffer("vertex", GL_FLOAT, offset, 3, 0);
lightingShaderProgram.enableAttributeArray("vertex");
offset += numCubeVertices * 3 * sizeof(GLfloat);
lightingShaderProgram.setAttributeBuffer("normal", GL_FLOAT, offset, 3, 0);
lightingShaderProgram.enableAttributeArray("normal");
offset += numCubeVertices * 3 * sizeof(GLfloat);
lightingShaderProgram.setAttributeBuffer("textureCoordinate", GL_FLOAT, offset, 2, 0);
lightingShaderProgram.enableAttributeArray("textureCoordinate");
cubeBuffer.release();
...

glDrawArrays(GL_TRIANGLES, 0, numCubeVertices);

spotlightBuffer.bind();
offset = 0;
coloringShaderProgram.setAttributeBuffer("vertex", GL_FLOAT, offset, 3, 0);
coloringShaderProgram.enableAttributeArray("vertex");
offset += numSpotlightVertices * 3 * sizeof(GLfloat);
coloringShaderProgram.setAttributeBuffer("color", GL_FLOAT, offset, 3, 0);
coloringShaderProgram.enableAttributeArray("color");
spotlightBuffer.release();

glDrawArrays(GL_TRIANGLES, 0, numSpotlightVertices);
...

}

Rendering the scene now involves less CPU usage and the attribute data is not repeatedly trans-
ferred from system memory to the graphics card anymore. Although this might not be visible
in this small example, it certainly boosts up the speed of programs where more geometry data
is involved.

3.6. Buffer Object 42

CHAPTER 4

Conclusion & Further Reading

We hope you liked this tutorial and that we have made you even more curious about OpenGL
and 3D programming. If you want to delve deeper into OpenGL, you should definitively think
about getting a good book dedicated to this topic. The OpenGL homepage1 lists quite a few
recommendations. If you are looking for an even higher level approach, you may consider
taking a look at Qt/3D2 and/or QtQuick3D3.

As OpenGL is able to compute a lot of information really fast, you may have thoughts about
using it for more than just computer graphics. A framework based on this approach is called
OpenCL (which is also managed by the Khronos Group Inc.). There even is a Qt Module for
this framework. It is called QtOpenCL4.

References:

• http://www.opengl.org - The OpenGL homepage

• http://www.khronos.org/opengl - The Khronos Group Inc. homepage regarding OpenGL

• http://www.khronos.org/opengles - The Khronos Group Inc. homepage regarding
OpenGL ES

• http://doc-snapshot.qt-project.org/qt3d-1.0 - Qt/3D Reference Documentation

• http://doc.qt.digia.com/qt-quick3d-snapshot - QtQuick3D Reference Documentation

1http://www.opengl.org
2http://doc-snapshot.qt-project.org/qt3d-1.0
3http://doc.qt.digia.com/qt-quick3d-snapshot
4http://doc.qt.digia.com/opencl-snapshot/index.html

43

http://www.opengl.org
http://doc-snapshot.qt-project.org/qt3d-1.0
http://doc.qt.digia.com/qt-quick3d-snapshot
http://doc.qt.digia.com/opencl-snapshot/index.html

	About this Tutorial
	Why Would You Want to Read this Guide?
	Get the Source Code and the Tutorial in Different Formats
	License

	Introduction
	What's OpenGL
	Drawing in 3D Space
	A Short Recapitulation of Linear Algebra
	Coordinate Systems & Frame Concept
	The OpenGL Rendering Pipeline
	OpenGL API
	The OpenGL Shading language

	Using OpenGL in your Qt Application
	Hello OpenGL
	Rendering in 3D
	Coloring
	Texture Mapping
	Lighting
	Buffer Object

	Conclusion & Further Reading

