
Particles and Graphics Effects in Qt
Quick 2

Release 1.0

Digia, Qt Learning

February 28, 2013

Contents

1 About this Tutorial 1
1.1 Why Would You Want to Read this Guide? 1
1.2 Get the Source Code and the Tutorial in Different Formats 1
1.3 License . 2

2 Particles 3
2.1 Overview . 3
2.2 Basic Setup . 3
2.3 ParticleGroups and Transitions . 7
2.4 what’s next? . 10

3 Shader Effects 11
3.1 Overview . 11
3.2 What’s next? . 14

4 Demo Application 15
4.1 The Main Element . 16
4.2 Background . 16
4.3 Winter Animation . 18
4.4 Spring Aniamtion . 20
4.5 Summer Animation . 21
4.6 Autumn Animation . 25
4.7 Shader Effect . 26
4.8 Summary . 28

i

ii

CHAPTER 1

About this Tutorial

1.1 Why Would You Want to Read this Guide?

The goal of this tutorial is to introduce you to some of the features of Qt Quick 2 for imple-
menting animations and graphic effects. Mainly, this tutorial provides an overview of how to
use the Particles module in Qt Quick 2 as well as ShaderEffects for advanced graphic effects.

The tutorial is split into three main chapters. In the first chapter, you will be introduced to the
Particles module. We will provide some basic setup code illustrating the use of the main types.
The second chapter provides a quick overview of how to use Shader programs within QML
through a simple example. The last chapter will focus on implementing a demo application
step-by-step using Animations, Particles, and Shaders.

1.2 Get the Source Code and the Tutorial in Different
Formats

A .zip file that contains the full code source of the tutorial’s examples is provided:

1

Particles and Graphics Effects in Qt Quick 2, Release 1.0

Source code1

The guide is available in the following formats:

• PDF2

• ePub3 for ebook readers.

• Qt Help4 for Qt Assistant and Qt Creator.

1.3 License

Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved.

This work, unless otherwise expressly stated, is licensed under a Creative Commons
Attribution-ShareAlike 2.5.

The full license document is available from http://creativecommons.org/licenses/by-
sa/2.5/legalcode .

Qt and the Qt logo is a registered trade mark of Digia plc and/or its subsidiaries and is used
pursuant to a license from Digia plc and/or its subsidiaries. All other trademarks are property
of their respective owners.

What’s Next?

Next chapter provides an overview of the Particles module in Qt Quick 2 with simple examples
that will cover the most basic types.

1http://releases.qt-project.org/learning/developerguides/qteffects/particles_src.zip
2http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.pdf
3http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.epub
4http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.qch

1.3. License 2

http://releases.qt-project.org/learning/developerguides/qteffects/particles_src.zip
http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.pdf
http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.epub
http://releases.qt-project.org/learning/developerguides/qteffects/ParticlesTutorial.qch
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

CHAPTER 2

Particles

2.1 Overview

Qt Quick 2 comes with the Particles module for making nice visual particle effects, which can
be used by many applications that require a lot of tiny moving particles such as fire simualtion,
smoke, stars, music visualization, and so on.

The Particles1 module is based on four major components:

2.2 Basic Setup

Let’s start with a simple example that illustrates how we can use those different elements to-
gether to make particle effects.

The following example implements a simple rectangle with a ParticleSystem type that
contains an ImageParticle2 to render particles based on an image, and an Emitter to create
and emit particles.

// particles_example_02.qml

import QtQuick 2.0
import QtQuick.Particles 2.0

Rectangle {

width: 360
height: 600
color: "black"

ParticleSystem {
anchors.fill: parent

// renders a tiny image

1http://qt-project.org/doc/qt-5.0/qtquick/qtquick-particles2-qtquick-effects-particles.html
2http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-imageparticle.html

3

http://qt-project.org/doc/qt-5.0/qtquick/qtquick-particles2-qtquick-effects-particles.html
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-imageparticle.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

ImageParticle {
source: "resources/particle.png"

}

// emit particle object with a size of 20 pixels
Emitter {

anchors.fill: parent
size: 20

}
}

}

If you run the code shown above, you will see a couple of tiny particles (based on the image
source) blinking on a black background.

The particles are emitted all over the entire area of the parent because we set the emitter’s
anchors to fill the entire area of the root element (that is, the rectangle).

To make the animation more intersting, we may want to make all particles emit from the bottom
of the window and spread out with an increased lifeSpan3.

First we set the emitter’s anchors and specify where we want the particles to be emitted from.

3http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-emitter.html#lifeSpan-prop

2.2. Basic Setup 4

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-emitter.html#lifeSpan-prop

Particles and Graphics Effects in Qt Quick 2, Release 1.0

Emitter {
height: 10; width: 10
anchors.bottom: parent.bottom
anchors.horizontalCenter: parent.horizontalCenter

}

Then we set the trajectory and speed of the particles using AngleDirection4 QML type.

Emitter {
...
velocity: AngleDirection {

// Make particles spread out vertically from the bottom
angle: 270
// make the movement of the particles slighly different from
// one another
angleVariation: 10
// set speed to 150
magnitude: 100
}

...
}

As the default lifeSpan for a particle is one second, we will increase its value so that we can
visualize the particles path:

Emitter {
...
// 8 seconds may be enough
lifeSpan: 8000

}

We can also set the particles to emit in various sizes by using the sizeVariation5 property in the
Emitter component:

Emitter {
...
// set the variation up to 5 pixels bigger or smaller
sizeVariation: 5

}

The colorVariation6 property in the ImageParticle type enables us to apply color variation
to the particles:

ImageParticle {
...
//Color is measured, per channel, from 0.0 to 1.0.
colorVariation: 1.0

}

Then we can use the Gravity7 affector to make our particles fall back down.

4http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-angledirection.html
5http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-emitter.html#sizeVariation-prop
6http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-imageparticle.html#colorVariation-prop
7http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-gravity.html

2.2. Basic Setup 5

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-angledirection.html
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-emitter.html#sizeVariation-prop
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-imageparticle.html#colorVariation-prop
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-gravity.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

ParticleSystem {
...
Gravity {

anchors.fill: parent
// apply an angle of acceleration when the particles hit
// the affector
angle: 90
// accelerate with 15 pisxels/second
acceleration: 15

}
...

}

If you now run the code, you will see an animation displaying particles of different sizes and
colors spreading out from the bottom to the top of the window and then falling back down.

Note: The complete code is available in the particles_example_02.qml file.

2.2. Basic Setup 6

Particles and Graphics Effects in Qt Quick 2, Release 1.0

2.3 ParticleGroups and Transitions

The Particles module also provides a ParticleGroup8 type that enables us to set timed transitions
on particle groups. This could be very helpful if we want to implement animations with special
behavior that require many transitions.

To illusrate how we can use ParticleGroup, let’s implement a simple fireworks anima-
tion. The particles should be emitted from the bottom of the window. We’ll also add some
TrailEmitters9 that simulates smoke produced by flames as well as explosions in mid-air.

In our fireworks animation we proceed as follows:

Within the main Rectangle, we add a ParticleSystem that will
be used by all components to run the animation.

Add the main Emitter that emits firework particles from the buttom
to the top of the window and specify a logical group identifier so that
we can later assign an ImageParticle to render the flame particles.

Add a TrailEmitter that will simulate the smoke produced by the
flame. We also specify a logical group so that we can later assign the
corresponding ParticlePainter to the emitter.

Add a ParticleGroup to simulate the explosion using a
TrailEmitter type.

Add a GroupGoal in the main Emitter to tell where or when to
apply the transition we define in the ParticleGroup.

Note: A logical group enables us to paint particles emitted by dif-
ferent Emitters using different ImagePartilces within the same
ParticleSystem as we will see later in the four seasons demo application.

So first, we declare one main Emitter that emits firework particles from the bottom to the
top:

import QtQuick 2.0
import QtQuick.Particles 2.0

Rectangle {

width: 360
height: 600
color: "black"

// main particle system
ParticleSystem {id: particlesSystem}

// firework emitter

8http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-particlegroup.html
9http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-trailemitter.html

2.3. ParticleGroups and Transitions 7

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-particlegroup.html
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-trailemitter.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

Emitter {
id: fireWorkEmitter
system: particlesSystem
enabled: true
lifeSpan: 1600
maximumEmitted: 6
// Specify the logical group that
// the emitter belongs to
group: "A"
// we want to emit particles
// from the bottom of the window
anchors{

left: parent.left
right: parent.right
bottom: parent.bottom

}

velocity: AngleDirection {
angle: 270
angleVariation: 10
magnitude: 200

}
}

}

Then we add a TrailEmitter type to simulate the smoke produced by the firework before
exploding in the air.

TrailEmitter {
system: particlesSystem
group: "B"
// follow particle emitted by fireWorkEmitter
follow: "A"
size: 12
emitRatePerParticle: 50
velocity: PointDirection {yVariation: 10; xVariation: 10}
acceleration: PointDirection {y: 10}

}

Then we add a ParticleGroup type to set a transition and simulate the explosion of particles
in the air. We will be using a TrailEmitter with an AngleDirection to display the
exploding effect.

ParticleGroup {
name: "exploding"
duration: 500
system: particlesSystem

TrailEmitter {
group: "C"
enabled: true
anchors.fill: parent
lifeSpan: 1000
emitRatePerParticle: 80
size: 10
velocity: AngleDirection {angleVariation: 360; magnitude: 100}
acceleration: PointDirection {y: 20}

2.3. ParticleGroups and Transitions 8

Particles and Graphics Effects in Qt Quick 2, Release 1.0

}
}

In order to know exactly where to apply the transition, we add a GroupGoal10 type inside
the fireWorkEmitter that tells the emitter what the aimed state is and when/where the particles
should switch to it.

Emitter {
id: foreWorkEmitter
...
GroupGoal {

// on which group to apply
groups: ["A"]
// the goalState
goalState: "exploding"
system: particlesSystem
// switch once the particles reach the window center
y: - root.height / 2
width: parent.width
height: 10
// make the particles immediately move to the goal state
jump: true

}
}

Next, we just add the ImageParticle types to visualize particles for each group defined
above.

// ParticlePainter for the main emitter
ImageParticle {

source: "resources/particle.png"
system: particlesSystem
color: "red"
groups: ["A"]

}

// ParticlePainter for the trailEmitter smoke
ImageParticle {

source: "resources/smoke_particle.png"
system: particlesSystem
groups: ["B"]
color: "white"

}

// ParticlePainter for the trailEmitter in the ParticleGroup
ImageParticle {

source: "resources/smoke_particle.png"
system: particlesSystem
groups: ["C"]
color: "red"
colorVariation: 1.2

}

And now if you run the code, you should have a simple animation that displays particles emitted
from the window bottom and exploding once they reach the window center:

10http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-groupgoal.html

2.3. ParticleGroups and Transitions 9

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-groupgoal.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

2.4 what’s next?

In the next article, we introduce the ShaderEffect type used for more advanced graphic
effects. We will also implement a demo application that uses Particles and Shaders.

2.4. what’s next? 10

CHAPTER 3

Shader Effects

3.1 Overview

In order to perform advanced graphical effects, Qt Quick 2 enables you to use vertex and
fragment shader programs with your QML local properties via the ShaderEffect1 QML type.

This type enables you to combine your GLSL program with your QML code to control the
graphics at a much lower level using custom shaders. ShaderEffect enables you to imple-
ment a vertex or fragment shader program in your QML code via the vertexShader2 and frag-
mentShader3 properties. When you specify a QML item as variant property in your ShaderEf-
fect, the item is provided to your vertex or fragment shader as Sampler2D.

Consider the following example:

import QtQuick 2.0

Rectangle {
id: root
color: "white"
width: 600
height: 300

Image {
id: background
width: parent.width/2
height: parent.height
source: "resources/Qt.png"
anchors {

right: parent.right
top: parent.top

}
}

ShaderEffect {
id: shaderEffect

1http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-shadereffect.html
2http://qt-project.org/doc/qt-5.0/qml-qtquick2-shadereffect.html#vertexShader-prop
3http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-shadereffect.html#fragmentShader-prop

11

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-shadereffect.html
http://qt-project.org/doc/qt-5.0/qml-qtquick2-shadereffect.html#vertexShader-prop
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-shadereffect.html#fragmentShader-prop
http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-shadereffect.html#fragmentShader-prop

Particles and Graphics Effects in Qt Quick 2, Release 1.0

width: parent.width/2
height: parent.height
anchors {

left: parent.left
top: parent.top

}

property variant source: background

}

}

The ShaderEffect type takes the background QML item, provides it as a Sampler2D to the
fragment shader and paints the result on the screen (at the position of the ShaderEffect). In the
above example, we did not specify any fragment or vertex shader. So the default shaders that
apply no special effects are used.

You can then add your vertex or fragment shader program using fragmentVertex or frag-
mentShader. For example, we can add an effect using a fragment shader as follows

import QtQuick 2.0

Rectangle {
id: root
color: "white"
width: 600
height: 300

Image {
id: background
width: parent.width/2
height: parent.height
source: "resources/Qt.png"
anchors {

right: parent.right
top: parent.top

}
}

ShaderEffect {
id: shaderEffect
width: parent.width/2

3.1. Overview 12

Particles and Graphics Effects in Qt Quick 2, Release 1.0

height: parent.height
anchors {

left: parent.left
top: parent.top

}

property variant source: background
property real frequency: 20
property real amplitude: 0.05
property real time

NumberAnimation on time {
from: 0; to: Math.PI * 2
duration: 1000
loops: Animation.Infinite

}

fragmentShader:
"varying highp vec2 qt_TexCoord0;
uniform sampler2D source;
uniform lowp float qt_Opacity;
uniform highp float frequency;
uniform highp float amplitude;
uniform highp float time;
void main(){

vec2 p= sin(time + frequency * qt_TexCoord0);
gl_FragColor = texture2D(source, qt_TexCoord0 + amplitude *vec2(p.y, -p.x))* qt_Opacity;

}";

}

}

Again the background QML item is provided as Sampler2D in the fragment shader. Another
very important feature that is introduced in the code above is the automatic property binding
between QML and GLSL code.

If an uniform variable in the vertex or fragment shader program has the same name as a property
defined in the ShaderEffect, the value of this property is bound to the uniform.

In the above code snippet we are using this feature in conjunction with a NumberAnimation to
produce a animated wobbling effect. The effect is shown in the screenshot below:

For more details concerning GLSL and the use of Shaders in QML, refer to the related links

3.1. Overview 13

Particles and Graphics Effects in Qt Quick 2, Release 1.0

listed at the end of this tutorial.

3.2 What’s next?

Next, we will be implementing a demo application that illustrates the use of the Particles
module and ShaderEffect type in QML.

3.2. What’s next? 14

CHAPTER 4

Demo Application

In order to have a better understanding of how to use Particles and ShaderEffect, we
will implement an example that illustrates their use to create some animations and graphical
effects.

In this chapter, we will implement a simple demo that consists of four background images
corresponding to one of the four seasons with special animations for each season. The idea is
to show you different ways and techniques of making nice animations and graphic effects using
particles and shaders.

Almost all animations are implemented using particle effects. However, we add some ani-
mations using shader effects. We will create four special animations, each having its own
Emitter and ParticlesImage types with different settings that correspond to the four
seasons of the year. The following figure presents a screenshot of the final implementation:

15

Particles and Graphics Effects in Qt Quick 2, Release 1.0

In order to easily follow the steps of our implementation, this tutorial is split into several sec-
tions. Each section covers the Emitter and ParticlesImage types (as well as other
elements) associated with each season.

4.1 The Main Element

The application consists of a Rectangle type with an Image that displays different back-
grounds. Each background image corresponds to a season. For each season, we associate
special animations based on Particles. We additionally add an animation when switching from
one season to another.

4.2 Background

The main rectangle displays an image for each season. Let’s start by implemeting a simple
animation once the user switches from one season to another.

Rectangle {
id: root

property int numberVal: 4

width: 600
height: 600
// enable keyboard events
focus: true

Image {
id: background
anchors.fill: parent
source: "resources/winter.png"

Behavior on source {
SequentialAnimation {

ParallelAnimation {
NumberAnimation { targets: background;

properties: "opacity";
to: 0 }

NumberAnimation { target: background;
property: "scale";
to : 2 }

}

PropertyAction {target: background;
property: "source"}

ParallelAnimation {
NumberAnimation { targets: background;

properties: "opacity";
to: 1 }

NumberAnimation { target: background;

4.1. The Main Element 16

Particles and Graphics Effects in Qt Quick 2, Release 1.0

property: "scale";
to : 1}

}
}

}
}

}

The default season is winter in the code shown above. To manage different seasons, we define
a State for each season as follows:

states :[
State {

name: "summer"
PropertyChanges { target: background;

source: "resources/summer.png" }
},

State {
name:"spring"
PropertyChanges{ target: background;

source: "resources/spring.png" }
},

State {
name:"autumn"
PropertyChanges{ target: background;

source: "resources/autumn.png" }
}

]

In every State, we just apply the corresponding background image to the active season.

Then we define a function to switch between seasons. Each function should set the correspond-
ing state and should later apply the related animation.

function toSpring()
{

state = "spring"
// Apply spring animation later ...

}

function toSummer() {
state = "summer"
// Apply summer animation later ...

}

function toAutumn() {
state = "autumn"
// Apply autumn animation later ...

}

function toWinter (){

4.2. Background 17

Particles and Graphics Effects in Qt Quick 2, Release 1.0

// default state
state = ""
// Apply winter animation later ...

}

Once the background image has been changed, we add a NumberAnimation that modifies
the image’s scale and opacity. For more details concerning animations in QML, refer to the
NumberAnimation Documentation1.

To switch between the season’s background, the user can simply press the space key on the
keyboard:

Keys.onPressed: {
if (event.key == Qt.Key_Space){

switch(state) {
case "":

toSpring();
break;

case "spring":
toSummer();
break;

case "summer":
toAutumn() ;
break;

case "autumn":
toWinter();
break;

}

}
}

4.3 Winter Animation

In the winter state, we want to display some snow particles falling down from the top of the
window. So first we declare a ParticleSystem that paints the particles and runs the emit-
ters:

ParticleSystem { id: sysSeason }

Then we add a ParticleImage type that visualizes logical particles using an image. In
our case, the image should correspond to a snow particle. We also specify the system
whose particles should be visualized and a group property to specify which logical particle
group will be painted. This is helpful if we want to use different emitters within the same
ParticleSystem:

ImageParticle {
id: snow
system: sysSeason
source: "resources/snow.png"

1http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-numberanimation.html

4.3. Winter Animation 18

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick2-numberanimation.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

groups: ["A"]
}

To emit particles, we add an Emitter type that emits our snow particles from the top window
down to the bottom using an AngleDirection with a 90° angle:

Emitter {
id: snowEmitter
// Enable the emitter as winter is the default state
enabled: true
system: sysSeason
group: "A"
lifeSpan: 8000
anchors{

left: parent.left
right: parent.right
top: parent.top

}
velocity: AngleDirection { angle: 90;

angleVariation : 20;
magnitude: 100 }

size: 20
sizeVariation: 10

}

We also specify the logical particle group that corresponds to the snowImage, with a
lifeSpan of 8 second.

The following screenshot shows what the particles will look like:

4.3. Winter Animation 19

Particles and Graphics Effects in Qt Quick 2, Release 1.0

4.4 Spring Aniamtion

In the Spring season, we want to display some flower and butterfly particles from the bottom
corners of the window. So first we define the ImageParticles to vizualize flower and
butterfly particles.

// ImageParticle for butterfly
ImageParticle {

id: butterfly
system: sysSeason
source: "resources/butterfly.png"
colorVariation: 1.0
groups: ["C"]

}

// ImageParticle for flowers
ImageParticle {

id: flower
system: sysSeason
source: "resources/flower.png"
colorVariation: 0.4
groups: ["B"]

}

As the particles should be emitted from different places, we will be using two emitters. In each
Emitter, we specify the logical particles group.

In the butterFly Emitter, we specify a group and emit the particles from the bottom right
corner:

Emitter {
id: butterFlyEmitter
enabled: false
system: sysSeason
lifeSpan: 5000
group: "C"
anchors.bottom: parent.bottom
velocity : AngleDirection { angle : 300;

angleVariation: 30;
magnitude: 100 }

size: 50
sizeVariation: 20

}

In flowerEmitter, we use the same code as in butterFlyEmitter, but with a different
group and from the opposite corner:

Emitter {
id: flowerEmitter
enabled: false
system: sysSeason
lifeSpan: 5000
group: "B"
anchors.bottom: parent.bottom
anchors.right: parent.right
velocity : AngleDirection { angle : 250;

4.4. Spring Aniamtion 20

Particles and Graphics Effects in Qt Quick 2, Release 1.0

angleVariation: 40;
magnitude: 100 }

size: 50
sizeVariation: 10

}

In the toSpring function, once we switch to the spring season, we disable the
snowEmitter and enable the butterFly and flower emitters.

function toSpring()
{

state = "spring"

snowEmitter.enabled = false
butterFlyEmitter.enabled = true
flowerEmitter.enabled = true

}

If you now run the code, you should be able to visualize flower and butterfly particles as shown
on the following screen:

4.5 Summer Animation

In the summer state, we will be adding two major animations: one to simulate the sun move-
ment and the other to launch some fireworks.

For the sun animation, we define an Emitter that emits particles using AngleDirection.
We also want the emitter to move from left to right, so we add a SequentialAnimation
on the x and y properties:

4.5. Summer Animation 21

Particles and Graphics Effects in Qt Quick 2, Release 1.0

Emitter {
id: summerEmitter
enabled: false
system: sysSeason
lifeSpan: 200
group: "G"
y: parent.height / 4
emitRate: 1600
velocity : AngleDirection { angleVariation : 360 ;

magnitude: 80}
size: 100
sizeVariation: 50

SequentialAnimation {
id: sunAnimation

ParallelAnimation
{

NumberAnimation { target: summerEmitter;
property: "x" ;
from: 0;
to: root.width/2;
duration: 10000;
running: false }

NumberAnimation { target: summerEmitter;
property: "y" ;
from: root.height/4;
to: 0;
duration: 10000;
running: false }

}

ParallelAnimation
{

NumberAnimation { target: summerEmitter;
property: "x" ;
from: root.width/2;
to: root.width;
duration: 10000;
running: false }

NumberAnimation { target: summerEmitter;
property: "y" ;
from: 0;
to: root.height/4;
duration: 10000;
running: false }

}
}

}

We add the ImageParticle to paint the particle using an image.

ImageParticle {
id: particle
system: sysSeason

4.5. Summer Animation 22

Particles and Graphics Effects in Qt Quick 2, Release 1.0

source: "resources/particle.png"
color:" yellow"
groups: ["G"]

}

Then we add the firework animation effect using the Emitter, TrailEmitter,
GroupGoal, ParticlesGroup and ImageParticles types as we have seen before
in the Particles article.

// ImageParticle to render the firework particles
ImageParticle {

system: sysSeason
id: fireWorkParticle
source: "resources/particle.png"
color: "red"
groups: ["D"]

}

//Emitter to creates and emits the firework particles
Emitter {

id: fireworksEmitter
enabled: false
group: "D"
system: sysSeason
lifeSpan: 3000
anchors.bottom: parent.bottom
width: parent.width
velocity : PointDirection {y: -120 ; xVariation: 16}
size: 20
GroupGoal {

groups: ["D"]
goalState: "lighting"
jump: true
system: sysSeason
y: - root.height / 2
width: root.width
height: 10

}

// TrailEmitter to simulate the smoke
TrailEmitter {

id: trailEmitter
system: sysSeason
group: "E"
follow: "D"
enabled: false
anchors.fill: parent
emitRatePerParticle: 80
velocity: PointDirection {yVariation: 16; xVariation: 5}
acceleration: PointDirection {y: -16}

}

// ParticlesGroup to simulate the explosion
ParticleGroup {

name: "lighting"
duration: 300

4.5. Summer Animation 23

Particles and Graphics Effects in Qt Quick 2, Release 1.0

system: sysSeason

TrailEmitter {
enabled: true
anchors.fill: parent
group: "F"
emitRatePerParticle: 80
lifeSpan: 2000
velocity: AngleDirection {magnitude: 64; angleVariation: 360}

}

}

In the toSummer function, we disable previous emitters and enable the sunEmitter, firework-
sEmitter and trailEmitter, and run runAnimation to move the emitter.

function toSummer() {
state = "summer"

butterFlyEmitter.enabled = false
flowerEmitter.enabled = false

sunEmitter.enabled = true
fireWorksEmitter.enabled = true
trailEmitter.enabled = true
sunAnimation.running = true

}

The result should look like this:

4.5. Summer Animation 24

Particles and Graphics Effects in Qt Quick 2, Release 1.0

4.6 Autumn Animation

In Autumn, we want to display some leaves falling down from the top of the window with a
wind effect. To achieve this, we first add an autumnEmitter that emits the particles from the
top of the window. This is quite similair to the snowEmitter we saw above:

Emitter {
id: autumnEmitter
enabled: false
system: sysSeason
group: "H"
lifeSpan: 8000
anchors{

left: parent.left
right: parent.right
top: parent.top

}
velocity : AngleDirection { angle: 90;

angleVariation : 20;
magnitude: 100 }

size: 40
sizeVariation: 20

}

Then we add an ImageParticle to render the leaf particles using an image. The ImageParticle
should belong to the same logical group as our autumnEmitter:

ImageParticle {
id: leaf
system: sysSeason
source: "resources/autumn_leaf.png"
groups: ["H"]

}

To add some effects, we will use an Affector that will generate a wind effect. For this, we will
be using the Wander2 affector that allows particles to randomly vary their trajectory:

Wander {
id: wanderer
enabled: false
system: sysSeason
anchors.fill: parent
xVariance: 360;
pace: 300;

}

And That’s it! Now we just need to disable the previous emitter and enable the autumnEmitter
and the wanderer affector in our toAutumn() function:

function toAutumn() {

state = "autumn"

summerEmitter.enabled = false

2http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-wander.html

4.6. Autumn Animation 25

http://qt-project.org/doc/qt-5.0/qtquick/qml-qtquick-particles2-wander.html

Particles and Graphics Effects in Qt Quick 2, Release 1.0

fireworksEmitter.enabled = false

autumnEmitter.enabled = true
wanderer.enabled = true

}

Note: We created a similar animation for Winter, but with a different background, different
particles displayed and some wand effects

Our Autumn animation will look like this:

In order to keep the same animation in the Winter, once we switch seasons, we need to disable
the emitter and affecter above and enable the snowEmitter as follows:

function toWinter (){
state = ""

autumnEmitter.enabled = false
wanderer.enabled = false

snowEmitter.enabled = true
}

4.7 Shader Effect

Now we want to display a hot air balloon moving up from the bottom of the window and have
a flag attached to it. For this we need two images:

One to simulate the hot air balloon with a NumberAnimation to make it move from the

4.7. Shader Effect 26

Particles and Graphics Effects in Qt Quick 2, Release 1.0

bottom to the top of the window:

Image {
id: ballon
x: root.width / 2 - width/2
y: root.height
source: "resources/ballonAir.png"

NumberAnimation on y { id: ballonAnimation;
running: false;
from: root.height;
to: - height * 2;
duration: 15000 }

}

A second for the flag to be attached to the balloon:

Image {
id: welcome_flag
anchors.top: ballon.bottom
anchors.horizontalCenter: ballon.horizontalCenter
source: "resources/welcome.png";

}

To simulate the wind effect on the flag, we add a fragment shader program via the
ShaderEffect type:

ShaderEffect {
id: shaderEffect
anchors.fill: welcome_flag
property variant source: welcome_flag
property real amplitude: 0.01
property real frequency: 20
property real time: 0

NumberAnimation on time { loops: Animation.Infinite;
from: 0;
to: Math.PI * 2;
duration: 600 }

fragmentShader:

"uniform lowp float qt_Opacity;
uniform highp float amplitude;
uniform highp float frequency;
uniform highp float time;
uniform sampler2D source;
varying highp vec2 qt_TexCoord0;
void main() {

highp vec2 p = sin(time + frequency * qt_TexCoord0);
gl_FragColor = texture2D(source, qt_TexCoord0 +

amplitude * vec2(p.y, -p.x)) * qt_Opacity;
}";

}

We want to display the balloon with the flag in the Spring season so in the related function, we
run the animation related to the balloon image.

4.7. Shader Effect 27

Particles and Graphics Effects in Qt Quick 2, Release 1.0

function toSpring()
{

//...
balloonAnimation.running = true

}

Now if you run the code, you should be able to visualize the air balloon animation.

Note: The full source code of this chapter is provided in the particles_seasons.qml file.

4.8 Summary

In this tutorial, we went through the Particles module in Qt Quick and the use of Shaders to
apply advanced animation effects. We also provided an example combining those technics. For
more details concerning Particles and Shaders effects, refer to these links:

• http://qt-project.org/doc/qt-5.0/qtquick/qtquick-particles2-qml-particlesystem.html

• http://qt-project.org/doc/qt-5.0/qtmultimedia/multimedia-video-qmlvideofx.html

• http://www.lighthouse3d.com/opengl/glsl/

4.8. Summary 28

http://qt-project.org/doc/qt-5.0/qtquick/qtquick-particles2-qml-particlesystem.html
http://qt-project.org/doc/qt-5.0/qtmultimedia/multimedia-video-qmlvideofx.html
http://www.lighthouse3d.com/opengl/glsl/

	About this Tutorial
	Why Would You Want to Read this Guide?
	Get the Source Code and the Tutorial in Different Formats
	License

	Particles
	Overview
	Basic Setup
	ParticleGroups and Transitions
	what's next?

	Shader Effects
	Overview
	What's next?

	Demo Application
	The Main Element
	Background
	Winter Animation
	Spring Aniamtion
	Summer Animation
	Autumn Animation
	Shader Effect
	Summary

