
Developing an arcade game with Qt3D
Release 0.1 (default)

DIgia, Qt Learning

February 28, 2013

Contents

1 About this Guide 1
1.1 Why should you read this guide? . 1
1.2 Get the source code and the guide in different formats 2
1.3 License . 2

2 How we Proceed 4

3 Overview of the “SpaceBurger” Game 5
3.1 Application idea . 5
3.2 Controls . 5
3.3 Game menu . 5

4 Qt3D Basics 6
4.1 Before you try the first example . 7

5 Hello world in Qt3D 8
5.1 Loading a model . 8
5.2 Where to get 3D models? . 9

6 Using a Camera 11
6.1 Animating the Camera’s position . 11

7 Skybox 13

8 Player Movement 15
8.1 Update-timer . 15
8.2 Keyinput . 16
8.3 Basic motion equations . 17
8.4 Transformations . 19

9 Moving targets 22
9.1 Onion Rings . 22

i

9.2 Collision-detection . 24
9.3 Dynamic Object Creation . 26

10 States 28

11 Game Menu 31
11.1 Head-up display . 31
11.2 Game menu . 33

12 Boss enemy 40
12.1 Camera movement . 40
12.2 Movement . 41
12.3 Weaponfire . 44

13 Shaders 49
13.1 Bulletshader . 49
13.2 Explosion . 52

14 Finalizing the game 56

ii

CHAPTER 1

About this Guide

1.1 Why should you read this guide?

The Qt3D module is a set of APIs that use OpenGL and aim on making 3D development
easier and more platform independent. It includes features like asset loading, shapes, texture
management and shaders.

Qt3D has both, a C++ and a Qt Quick API.

The main aim of the C++ API is to make 3D programming platform independent. You don’t
have to worry anymore what 3D architecture in use. It should be no matter whether it is desktop
or embedded OpenGL or whether a fixed or dynamic pipeline is used.

The Qt3D Qt Quick module provides more abstraction and makes it possible to write complete
3D applications in Qt Quick only. Using the Qt3D Qt Quick module, you can very easily mix
2D and 3D elements, implement head up displays overlaying a 3D scene, or even embed 3D
elements in a 2D Qt Quick user interface.

Qt3D was initially developed as an add-on project in Qt4. Today, it is a part of Qt5. It is a good
time to take a closer look on this in an hands-on example and get ready to use it in the future.

The purpose of this guide is to give a brief overview of the Qt3D Qt Quick by walking the
reader through the development of an arcade game:

This guide will show how the 2D and 3D worlds can be combined in one application. Addition-
ally we will talk about basic lighting, material and texture topics. While developing the game,

1

Developing an arcade game with Qt3D, Release 0.1 (default)

you will get an overview of major Qt Quick elements1 provided by the Qt3D module and learn
how to use them.

This guide uses QML only without any C++ code. A solid Qt Quick knowledge is a prerequisite
for reading this guide. Additionally, some basic understanding of computer graphics, OpenGL2

in general, OpenGL shaders and GLSL (OpenGL Shading Language) is required. If you do
not have sufficient knowledge in OpenGL, you should strongly consider reading the OpenGL
tutorial3 first.

In this guide, we will focus on 3D and graphic aspects. Generic aspects of application develop-
ment for desktop and mobile are in focus in other guides. If you are interested in this, consider
reading them first4.

After completion of this guide, you should have a good understanding of how the Qt3D Qt
Quick API works as well as how to develop basic desktop and mobile applications with this
technology.

1.2 Get the source code and the guide in different for-
mats

A .zip file that contains the source code of each chapter is provided here:

Source code5

The guide is available in the following formats:

• PDF6

• ePub7 for ebook readers.

• Qt Help8 for Qt Assistant and Qt Creator.

1.3 License

Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved.

This work, unless otherwise expressly stated, is licensed under a Creative Commons
Attribution-ShareAlike 2.5.

The full license document is available from http://creativecommons.org/licenses/by-
sa/2.5/legalcode .

1http://qt-project.org/doc/qt-5.0/qt3d-qml3d.html
2http://www.opengl.org
3http://qt-project.org/wiki/Developer-Guides/index.html
4http://qt-project.org/wiki/Developer-Guides/
5http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/completegame_src.zip
6http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.pdf
7http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.epub
8http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.qch

1.2. Get the source code and the guide in different formats 2

http://qt-project.org/doc/qt-5.0/qt3d-qml3d.html
http://www.opengl.org
http://qt-project.org/wiki/Developer-Guides/index.html
http://qt-project.org/wiki/Developer-Guides/index.html
http://qt-project.org/wiki/Developer-Guides/
http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/completegame_src.zip
http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.pdf
http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.epub
http://releases.qt-project.org/learning/developerguides/gamedevelopmentqt3d/GameDevelopmentQt3D.qch
http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

Developing an arcade game with Qt3D, Release 0.1 (default)

Qt and the Qt logo is a registered trade mark of Digia plc and/or its subsidiaries and is used
pursuant to a license from Digia plc and/or its subsidiaries. All other trademarks are property
of their respective owners.

What’s Next?

In the next chapter we will explain the application concept and look at small first examples.

1.3. License 3

CHAPTER 2

How we Proceed

In the following chapters, we will start with the development of our game. We will proceed
step-by-step and take a deeper look on Qt3D Qt Qtuick API and related technologies. The
source code archive accompanying this guide contains the final version of the application. Since
this guide in on an advanced level, we will discuss relevant code samples directly taken from
this version and omit making small applications for each topic.

First, we will cover basics of the Qt Quick Qt3D API. After this, we learn how to load models
and textures. We will also cover dynamic model creation, making Head up Displays, states, a
game menu, and the usage of GLSL shaders.

In the course of the guide, we will explain basics of Qt Quick Qt3D API. Nevertheless, you
should read the detailed description provided in the Qt documentation1.

As previously mentioned, we use only QML in the development in order to stay focused on Qt
Quick. This is sufficient for many basic use cases. Qt3D’s C++ API provides more features
and a better control over the elements imported in Qt Quick. When developing a more complex
game or a real 3D application, you will sooner or later need to define your own modules in C++
and exposing them to Qt Quick. This is a more advanced topic out of scope of this guide.

1http://qt-project.org/doc/qt-5.0/qt3d-reference.html

4

http://qt-project.org/doc/qt-5.0/qt3d-reference.html

CHAPTER 3

Overview of the “SpaceBurger” Game

3.1 Application idea

Our game will be called SpaceBurger. Playing this game, your mission is to steer a hamburger
through the darkness of the space and to try to hit as many onion rings as possible. Each
onion ring brings additional scope. During the flight, it is possible increase maneuverability
and firepower by hitting small power-ups. The player has to pass multiple levels including a
special challenge at the end of every level: a fight against a boss* enemy. Once the boss has
been defeated, the next level begins.

3.2 Controls

While having to hit several targets along the way, the hamburger is shown from behind. It
can be controlled using the A (left), S (down), D (right) and W (up) keys. We will use basic
movement equations to achieve realistic flight behavior.

The fight against the boss enemy at the end of every level is shown from the top view. During
the fight, the hamburger can then only be moved left and right. Weapons can be fired using the
space key.

3.3 Game menu

When starting the application, a game menu will be displayed. The player can start a new game
and review the achieved results in a highscore table.

5

CHAPTER 4

Qt3D Basics

In order to starting using Qt3D API in Qt Quick you need to import it in your application with
the statement:

import Qt3D 1.0

After this, you can load items provided by the Qt3D module. Most important from them are:

Viewport* The Viewport1 element specifies a viewport for the whole scene. It is
the root element and defines the camera and (scene-)lights as well as rendering
parameters. It is usually the outermost element in a 3D scene.

Camera* The Camera2 element is assigned to the camera property of the viewport.
It defines a viewing position and direction as well as the projection. Furthermore
stereo projections are supported.

Item3D* The Item3D3 is used for creating visible 3D objects in a scene. It defines
basic parameters and methods for manipulating an object. To create a visible ob-
ject, a mesh has to be specified for the Item3D. Futhermore tree structures can be
built out of Item3Ds which allows the creation of logical groups. Children of an
Item3D are placed relatively to their parent object in the 3D scene. I.e. if the parent
object is moved or rotated, all the children will also be rotated.

Mesh* The Mesh4 is used to load geometry in such a way that it can be used in
Qt3D. File loading is done automatically after a filename is specified. The mesh
element chooses the appropriate model loader from the file ending. The supported
model formats are e.g. 3ds, dae, bez and obj.

Effect* An Effect5 defines a very basic and simple way on how an item is rendered
on the screen. With it simple lighting, material and texture effects can be achieved.

ShaderProgram* The ShaderProgram6 element is derived from Effect and gives

1http://qt-project.org/doc/qt-5.0/qml-viewport.html
2http://qt-project.org/doc/qt-5.0/qml-camera.html
3http://qt-project.org/doc/qt-5.0/qml-item3d.html
4http://qt-project.org/doc/qt-5.0/qml-mesh.html
5http://qt-project.org/doc/qt-5.0/qml-effect.html
6http://qt-project.org/doc/qt-5.0/qml-shaderprogram.html

6

http://qt-project.org/doc/qt-5.0/qml-viewport.html
http://qt-project.org/doc/qt-5.0/qml-camera.html
http://qt-project.org/doc/qt-5.0/qml-item3d.html
http://qt-project.org/doc/qt-5.0/qml-mesh.html
http://qt-project.org/doc/qt-5.0/qml-effect.html
http://qt-project.org/doc/qt-5.0/qml-shaderprogram.html

Developing an arcade game with Qt3D, Release 0.1 (default)

the user the means for creating custom shader programs in GLSL. You can specify
a fragment and a vertex shader. The texture property inherited from the Effect ele-
ment will be maped to the qt_Texture0 in the shader program code. The ShaderPro-
gram automatically binds custom properties to your fragment and vertex shaders if
they exist under the same name. If you want e.g. to specify more then one texture
you may do so by adding a string property with the path to your texture.

Material* Materials7 provide some information for an effect, like lighting proper-
ties and colors.

Transformations* There are currently four transformations available in Qt3D: Ro-
tation3D8, Translation3D9, Scale3D10 and LookAtTransform11. All of these can
be applied to an Item3D and rotate, translate, scale or change the orientation of an
item. The order in which the transformations are specified are very important for
the result. It makes a difference if an item is rotated first and then translated or the
other way round.

4.1 Before you try the first example

Qt3D is available for Qt 4.8 as an add-on. Qt5 is the first Qt version where Qt3D is available
as an Essential Module12. In this guide, we will use Qt5 only. If required, the game can be
ported to Qt4.8 with a minimal effort. If you already have installed Qt5, please make sure that
OpenGL is supported. More information where to download Qt5 and how get it installed is
available on the Qt Project homepage13.

In-line examples and the final game are available as QML files. Please use the program
qmlscene from the qtbase/bin directory to try the code.

What’s Next?

Next we will be using the elements explained above in a very simple example.

7http://qt-project.org/doc/qt-5.0/qml-material.html
8http://qt-project.org/doc/qt-5.0/qml-rotation3d.html
9http://qt-project.org/doc/qt-5.0/qml-translation3d.html

10http://qt-project.org/doc/qt-5.0/qml-scale3d.html
11http://qt-project.org/doc/qt-5.0/qml-lookattransform.html
12http://qt-project.org/wiki/Qt-Essentials-Modules
13http://qt-project.org/wiki/Qt_5.0

4.1. Before you try the first example 7

http://qt-project.org/doc/qt-5.0/qml-material.html
http://qt-project.org/doc/qt-5.0/qml-rotation3d.html
http://qt-project.org/doc/qt-5.0/qml-rotation3d.html
http://qt-project.org/doc/qt-5.0/qml-translation3d.html
http://qt-project.org/doc/qt-5.0/qml-scale3d.html
http://qt-project.org/doc/qt-5.0/qml-lookattransform.html
http://qt-project.org/wiki/Qt-Essentials-Modules
http://qt-project.org/wiki/Qt_5.0

CHAPTER 5

Hello world in Qt3D

Every scene is rendered into a Viewport element which can be used as any Qt Quick element.
It can be anchored, have a size and contain any other items:

// game.qml
import QtQuick 2.0
import Qt3D 1.0

// A Viewport element with defined geometries
Viewport {

id: root
width: 300
height: 200

}

When running the code above, a black rectangle is displayed on the screen. It is not that exciting
yet... :-)

5.1 Loading a model

In order to fill our empty scene with some exciting stuff, a model will be loaded and placed at
the origin (where the x,‘y‘ and z coordinates are set to 0) of the scene.

Qt3D has support for some of the most common model formats. For displaying them into a
scene, we simply create a mesh and apply it to an Item3D’s mesh property:

// game.qml
import QtQuick 2.0
import Qt3D 1.0

// A Viewport element with defined geometries
Viewport {

id: root
width: 300
height: 200

Item3D {

8

Developing an arcade game with Qt3D, Release 0.1 (default)

id:hamburger
scale: 0.1
mesh: Mesh {

source: "hamburger/models/hamburger.dae"
}

}
}

In this example, we have loaded the geometry from hamburger.dae and scaled it to 10% of
its original size. After we apply the source property, the model-loading process is started.
Note that the loaded geometry is not only restricted to vertices and indices, it can also include
materials and textures.

When you execute this code, a hamburger should be displayed in front of the camera. You can
viewed from a different perspective by dragging and scrolling the mouse. It looks like this:

5.2 Where to get 3D models?

Making 3D models requires quite some effort and sufficient skill. You might want to re-use
general or simple 3D models from other projects. Even though there are plenty of sources
on the Internet where one can get 3D models, you should proceed carefully check license
conditions. Make sure that the author on download page is the real author and you may use this
model for your purposes.

Here are some good sources where you search for free good-quality 3D models:

http://archive3d.net/ : Lots of free and high-quality 3D models, but sometimes the
models have too many polygons for a real time application.

http://sketchup.google.com/3dwarehouse/ : The Google 3D warehouse is probably
the best source to get free 3D models on the Internet. Users can publish their self-

5.2. Where to get 3D models? 9

http://archive3d.net/
http://sketchup.google.com/3dwarehouse/

Developing an arcade game with Qt3D, Release 0.1 (default)

made models that are usually made using Google Sketchup1. Most models are
therefore offered in the Google Sketchup format (.skp). If you want to use them
in your application, you first have to convert them to Collada (.dae). The best way
to do this is by downloading Google Sketchup and exporting the files from there.
There is also an import plugin for 3D Max 2010 that should work fine. The models
in the 3D warehouse are of variable quality, but the license is free for commercial
use.

http://thefree3dmodels.com/ : Lots of free high-quality 3D models under the
Attribution-Noncommercial-Share Alike 3.0 license.

What’s Next?

In the next chapter, we will see how to use the Camera element.

1http://sketchup.google.com/

5.2. Where to get 3D models? 10

http://sketchup.google.com/
http://thefree3dmodels.com/

CHAPTER 6

Using a Camera

In the previous chapter we used the Viewport element to render a scene with a model placed
at the origin. When you look at this 3D scene rendered on your monitor, you still see a 2D
picture. Quite some computing is required for this. It is done by OpenGL. A mapping of a 3D
scene geometry onto a 2D area on your computer monitor (this area is also called the viewport)
requires a transformation matrix. This matrix consists of a camera position, a type of projection
and a viewing vector. The OpenGL term for this matrix is modelview-projection matrix. Please
have a look at the OpenGL Tutorial1 for more details.

Qt3D offers a very convenient way to deal with projections as described above, the Camera2

element. The Camera element has the properties to define position, projection type, near and far
planes. These properties are used as parameters to calculate according modelview-projection
matrix and and projection itself.

6.1 Animating the Camera’s position

In the next example, we want to use the camera to rotate around our model, which has been
placed at the origin.

The only thing we have to do for this is creating a new Camera element and assign it to the
camera property of the Viewport3. The eye property is the position of the camera and the center
is basically the point in the 3D space at which the camera is looking. The default value is the
origin so the property would be dispensable in this example:

//game.qml
...
Viewport {
...

//The game camera
camera: Camera {

id: cam
property real angle:0

1http://qt-project.org/wiki/Developer-Guides/
2http://qt-project.org/doc/qt-5.0/qml-camera.html
3http://qt-project.org/doc/qt-5.0/qml-viewport.html

11

http://qt-project.org/wiki/Developer-Guides/
http://qt-project.org/doc/qt-5.0/qml-camera.html
http://qt-project.org/doc/qt-5.0/qml-viewport.html

Developing an arcade game with Qt3D, Release 0.1 (default)

center: Qt.vector3d(0,0,0)
eye: Qt.vector3d(20 Math.sin(angle), 10, 20*Math.cos(angle))
NumberAnimation on angle{

to: 100
duration: 1000000

}
}

...
}

The rotation around the origin has been created in this example by using the sine and cosine
together with a NumberAnimation on a custom property called angle. The angle is increasing
from 0 to 100 over a big enough timespan.

What’s Next?

Next we will see how to use a Skybox in order to visualize stars in space.

6.1. Animating the Camera’s position 12

CHAPTER 7

Skybox

At the current stage of the development, we have just a hamburger* and a camera which moves
around it. Lets create a feeling of being in the space and add some stars.

There are several ways of accomplishing this. One way is to use Qt Quick particles, specifically
one for each star. We can use normal spheres for planets and suns. All these however, are very
involved topics that can push us into the realm of topics beyond the scope of this guide. We
will go another way and use a technique called skybox* to model stars and suns.

Skybox is a cube around the camera that creates the illusion of a distant 3D surrounding. A
texture is projected on every side of the cube. The skybox usually does not move with the
viewer in the 3D scene so it creates the illusion of being very far away. It can be used to render
very far away mountains, clouds or, in our case, stars when flying through space. Because a
skybox is a 6-sided cube, 6 textures are required - one for every side of the cube.

There are several sources of skybox textures on the internet. The problem is however, that
a texture is projected onto a huge area on the screen and therefore has to be in a very high
resolution (e.g. 1024x1024) to be of good quality. Because of this, we recommend using
applications which are specialized for creating skybox textures:

Terragen1: A terrain generator for photo realistic terrains. It is very easy to use and
is available as a feature limited freeware application.

Spacecape2: An open source project for creating space skyboxes containing several
layers of nebulas, suns and stars.

Fortunately, Qt3D has a built-in element called Skybox3 that does exactly what we are looking
for. It takes a source folder which should contain 6 textures. The textures can have a random
name but must contain the orientation in the skybox (north*, south, east, west, up and down).
A texture could have the name space_west.png.

// game.qml
...
Viewport {
...

1http://www.planetside.co.uk/
2http://sourceforge.net/projects/spacescape/
3http://qt-project.org/doc/qt-5.0/qml-skybox.html

13

http://www.planetside.co.uk/
http://sourceforge.net/projects/spacescape/
http://qt-project.org/doc/qt-5.0/qml-skybox.html

Developing an arcade game with Qt3D, Release 0.1 (default)

Skybox{
//The folder containing the skybox textures
source: "space"

}
...
}

The following skybox was made using the Spacescape:

What’s Next?

Next we will see how to create the player object and move it in the 3D world.

14

CHAPTER 8

Player Movement

In our game, we want the player to control the hamburger* movement using the keyboard input.
It should be possible to move it from left to right and up and down. Furthermore, the orientation
should depend on the current acceleration.

In order to achieve realistic flight behavior, the movement is controlled using some basic move-
ment equations. For the sake of good order, we will be implementing the logic code of our game
into a new Gamelogic.qml file.

8.1 Update-timer

Before we implement the movement equations, we do need an update timer that periodically
updates the hamburger*‘s position and acceleration. An interval value of 50ms should be suffi-
cient for achieving fluent movement.

Later on, within the onTriggereed signal handler, the movement equations will be processed
and the hamburger* position should be updated.

//Gamelogic.qml

import QtQuick 2.0

Item {

Timer {
id: gameTimer
running: true
interval: 50
repeat: true
onTriggered: {
...
// update position...

}
}

}

15

Developing an arcade game with Qt3D, Release 0.1 (default)

8.2 Keyinput

To handle the keybord input, we first need to set the value of the focus property of the root item
to true to handle the key events. We also need four new variables (one for each key), which
are either set to true or false depending on the press state of the keys. Within onPressed and
onReleased we handle the eventual key events as shown in the code below:

This whole construct is necessary because we want to allow the user to press and
hold more then one key at a time. We also need four new variables (one for each
key), which are either set to true or false depending on the press state of the keys.
Movement processing is then performed in the update-timer’s onTriggered signal:

Item {
...
focus: true
property bool upPressed: false
property bool downPressed: false
property bool leftPressed: false
property bool rightPressed: false

//Handling of basic key events
Keys.onPressed: {

if(event.key == Qt.Key_A)
leftPressed = true

if(event.key == Qt.Key_D)
rightPressed = true

if(event.key == Qt.Key_W)
upPressed = true

if(event.key == Qt.Key_S)
downPressed = true

if(event.key == Qt.Key_Space)
fireLaser();

}
Keys.onReleased: {

if(event.key == Qt.Key_A)
leftPressed = false

if(event.key == Qt.Key_D)
rightPressed = false

if(event.key == Qt.Key_W)
upPressed = false

if(event.key == Qt.Key_S)
downPressed = false

}
}

Later we will perform the movement processing in the update-timer’s onTriggered signal han-
dler.

Then we have to instantiate the Gamelogic component in the main game.qml file.

//game.qml

Viewport {
...
Gamelogic {id: gameLogic}
...

8.2. Keyinput 16

Developing an arcade game with Qt3D, Release 0.1 (default)

}

8.3 Basic motion equations

In the our SpaceBurger game, the hamburger* will be seen from the back (if there is any for a
hamburger). So we set the camera’s eye position to (0, 0,-30). The player can then move it on
the y and x axes. To make sure that the hamburger will remain in the screen view, we define x
and y boundaries that will restrict the movement. The x and y bounds could be calculated from
the camera parameters, but a we can simply set 4.5 value for the x-bound and 5 value for the
y-bound.

Note: The y and x bound parameters will change with the aspect ratio of the viewport you are
using and in general with the camera parameters!

//game.qml
...
Viewport {

...
property real x_bound: 4.5
property real y_bound: 5
...

}

To move the hamburger* object, we will be using the two basic motion equations for constant
acceleration1 . The motion equations are based on the acceleration, the current speed and the
position values.

//Velocity is acceleration multiplied with time plus the initial speed v = a t + v0
//Distance is velocity multiplied with time plus the initial distance s = v t + s0

We create a new Player.qml file to define the Hamburger as a separate component, and calculate
its speed and acceleration for the x and y axes an. Those values are then saved in the vx, vy, ax
and ay properties as shown in the code below:

//Player.qml
import QtQuick 2.0
import Qt3D 1.0

Item3D {

property real vx: 0
property real vy: 0

property real ax: 0
property real ay: 0

mesh: Mesh { source: "hamburger/models/hamburger.dae" }

1http://en.wikipedia.org/wiki/Motion_equation#Constant_linear_acceleration

8.3. Basic motion equations 17

http://en.wikipedia.org/wiki/Motion_equation#Constant_linear_acceleration
http://en.wikipedia.org/wiki/Motion_equation#Constant_linear_acceleration

Developing an arcade game with Qt3D, Release 0.1 (default)

scale: 0.1
}

Since we can build a tree structure with an Item3D, we will define a root Item3D for the top
level which contains all the visible 3D items of the scene. The player object will then be a child
of an Item3D element. Furthermore, we set the camera to a position behind the burger:

//game.qml

Viewport {
...
Item3D {

id: level

Player {
id: player

}
}

camera: Camera {
id: cam
eye: Qt.vector3d(0, 0,-30)

}
...

}

We will also define a variable called maneuverability in the Gamelogic.qml in order to have
better control over the flight parameters. A convenient value for the maneuverability will be
0.3:

// Gamelogic.qml
...
property real maneuverability: 0.3
//The game timer is our event loop. It processes the key events
//and updates the position of the hamburger
Timer {

id: gameTimer
running: true
interval: 50
repeat: true
onTriggered: {

//Velocity is updated
player.vx+=player.ax 0.05
player.vy+=player.ay 0.05
//Acceleration is updated
player.ax=(player.ax+maneuverability leftPressed

+ maneuverability*rightPressed)/1.1
player.ay=(player.ay+maneuverability downPressed

+ maneuverability*upPressed)/1.1
//Position is updated
player.position.x += player.vx 0.05
player.position.y += player.vy 0.05
//If the player exceeds a boundary, the movement is stopped
if (player.position.x>x_bound) {

player.position.x = x_bound
player.vx = 0;
if (player.ax>0)

8.3. Basic motion equations 18

Developing an arcade game with Qt3D, Release 0.1 (default)

player.ax = 0
}
else if (player.position.x<-x_bound) {

player.position.x = -x_bound
player.vx = 0
if (player.ax<0)

player.ax = 0
}
else if (player.position.y<-y_bound) {

player.position.y = -y_bound
player.vy = 0
if (player.ay<0)

player.ay = 0
}
else if (player.position.y>y_bound) {

player.position.y = y_bound
player.vy = 0
if (player.ay>0)

player.ay = 0
}

}
}
...

Now we should be able to move the hamburger* smoothly over the screen and the movement
should stop on the viewport boundaries.

Note: For a realistic flight behavior, the hamburger* should turn into the flight direction.

8.4 Transformations

There are currently four transformation types available in the Qt3D module: Rotation3D,
Scale3D, Translation3D and LookAtTransform. The names should be fairly self-explanatory.

One or more transformations can be applied to an Item3D‘s transform or pretransform prop-
erties. The pretransform property however is intended to transform the model before all other
transformations, because it may be in an unconventional scale, rotation or translation after
loading.

As explained above, we want the hamburger* to rotate in the flight direction, so we need to
achieve three things:

• When moving hamburger along the x axis (left or right), the hamburger should roll a bit
into flight direction. (the rotation axis is the z axis)

• When moving hamburger along the x axis (left or right), it should move the nose in flight
direction. (the rotation axis is the y axis)

• When moving hamburger along the y axis (up or down), the hamburger should move its
front up or down. (the rotation axis is the x axis)

8.4. Transformations 19

Developing an arcade game with Qt3D, Release 0.1 (default)

Now we can add the different transformations to the transform property in the Player.qml and
specify their axis. We are connecting the angle of each rotation directly to the acceleration,
which will have a fairly good-looking result. The scalar factors have been obtained by trial and
error:

//Player.qml
...
transform: [

Rotation3D {
angle: -10 ay
axis: "1, 0, 0"

},
Rotation3D {

angle: 5 ax
axis: "0, 1, 0"

},
Rotation3D {

angle: -20 ax
axis: "0, 0, 1"

}
]
...

When moving the hamburger*, you might notice that the rolling behavior is a bit strange. That
is because the balance point of the object is not at the origin. We can however correct this very
easily by applying a Translation3D to the pretransform property. In addition to this, the scaling
was moved into pretransform as well (i.e we have to remove the scale property in the Player).
Furthermore a rotation of 45° on the y axis was added for aesthetic reasons.

//Player.qml
pretransform: [

Scale3D {
scale: 0.1

},
//Moving the objects origin into the balance point

Translation3D {
translate: "0,-1,0"

},
Rotation3D {

angle: 45
axis: "0, 1, 0"

}
]
...

The hamburger* object could now be controlled by the player:

8.4. Transformations 20

Developing an arcade game with Qt3D, Release 0.1 (default)

What’s Next?

Next we add the onion rings to be hit by the player in our game. For this, we will introduce
dynamic object creation, collision detection and how to use textures and predefined shapes.

8.4. Transformations 21

CHAPTER 9

Moving targets

In our SpaceBurger game, the flying hamburger* should hit onion rings moving toward the
player as targets to increase the player’s score. In this chapter, we will see how to implement
the onion rings.

9.1 Onion Rings

Every onion ring* will be rendered using a quad with a semi transparent texture. To create the
quad, we’ll be using the Qt3D Shapes module, which comes with many predefined shapes such
as quads, cylinders, teapots etc.

So first, we create a new Target.qml file to implement the onion ring component* which consist
of a Quad element: .. code-block:: js

//Target.qml

import QtQuick 2.0
import Qt3D 1.0
import Qt3D.Shapes 1.0

Quad {
id: root

}

The Quad element is lying on the (x,z) plane by default. However, to face the camera, we need
to apply a pretransform as follows:

//Target.qml
...
Quad {

id: root

pretransform: [
Rotation3D { axis: "1,0,0"; angle: 90}

]
}

22

Developing an arcade game with Qt3D, Release 0.1 (default)

We also want to apply a semi transparent texture onto the quad where only the onion ring*
part of the texture is visible. That means, however, that we need an image format that supports
transparency. PNG format is a convenient choice.

Furthermore, we want to have some transparency on the non transparent parts of the onion
ring*. For that we add a Material1 with a diffuseColor that has an alpha value of 0.9 so that
onion ring is slightly transparent. We also want to have the onion ring glowing a bit, so we add
a red emittedLight:

//Target.qml
...
Quad {

...
effect: Effect {

blending: true
material: Material {

textureUrl: "onion.png"
emittedLight: Qt.rgba(1,0.8,0.8,1)
diffuseColor: Qt.rgba(1,1,1,0.9)

}
}
...

}

Since we are using blending for the transparent objects, we have to consider few things: First
of all the blending property in the Effect has to be set. This will also override the viewport
specific setting for alpha blending. When using blending, items have to be painted from back
to front. This means that items which are farther away from the viewer have to be painted first,
which requires to sort the items. Fortunately, Qt3D does this for us automatically if we set the
sortChildren property to BackToFront in the parent Item3D element.

//game.qml
...
Item3D {

id: level
sortChildren: Item3D.BackToFront
...

}
...

Note: BackToFront sorting works only for one hierarchy level. This means only direct children
of an Item3D are sorted and not the children’s children.

Once a Target is created, it should immediately start moving toward the player. We can achieve
this by a adding a NumberAnimation on the z property of the Quad.

//Target.qml
...
Quad{

...
NumberAnimation on z{

running: true

1http://qt-project.org/doc/qt-5.0/qml-material.html

9.1. Onion Rings 23

http://qt-project.org/doc/qt-5.0/qml-material.html

Developing an arcade game with Qt3D, Release 0.1 (default)

duration: 10000
from: 200
to: -30

}
...

}

You can now test the Target component by manually adding it to the level. It should then
be created in the distance and fly towards the player. However, later we should create Target
objects dynamically.

//game.qml
...
Item3D {

id: level
...
Target { }
...

}
...

9.2 Collision-detection

Collision-detection is not yet supported by Qt3D and it is not possible to get a bounding box of
an Item3D. But still, we can implement a simple collision detection on our own.

A collision test is only performed between two objects (i.e. in our game, a collision only
occurs between the onion ring* and the hamburger and between the weapon fire and the enemy
or player). But since we will also be using collision detection for other items, we will create a
new component in a BasicGameItem.qml file, which implements the collision detection. This
component will be used as a parent item for all the components that need to implement a
collision detection.

9.2. Collision-detection 24

Developing an arcade game with Qt3D, Release 0.1 (default)

To archieve the detection we will proceed as follows:

A target is specified for which the collision test is performed.

The target element has to define a radius property that specifies the size of the
object.

The BasicGameItem should define a radius that specifies the size of the item.

Every time a positionChanged signal is emitted, a test for collision takes place.

If a collision is detected, a collisionDetected signal is emitted and BasicGameItem
is destroyed afterwards.

And here is how our code looks like:

//BasicGameItem.qml
import QtQuick 2.0
import Qt3D 1.0

Item3D {
id: gameItem

signal collisionDetected(variant object)

property variant collisionTarget: 0

property real radius: 0.5

//Test for a collision between the item and the target
function testCollision(){
if (Math.pow(x-collisionTarget.x,2)+Math.pow(y-collisionTarget.y,2)

+ Math.pow(z-collisionTarget.z,2)
< Math.pow(radius+collisionTarget.radius,2)) {
return true;

}
return false;
}

onPositionChanged: {
if (collisionTarget!=0) {

if (testCollision()) {
collisionDetected(gameItem)
gamenItem.destroy()
}

}
}

}

Now, the Target.qml file will look like this:

// Target.qml

BasicGameItem {
id: root
Quad {
pretransform: [

Rotation3D { axis: "1,0,0"; angle: 90}
]

9.2. Collision-detection 25

Developing an arcade game with Qt3D, Release 0.1 (default)

effect: Effect {
blending: true
material: Material {
textureUrl: "onion.png"
emittedLight: Qt.rgba(1,0.8,0.8,1)
diffuseColor: Qt.rgba(1,1,1,0.9)
}

}
}
NumberAnimation on z{
running: true
duration: 10000
from: 200
to: -30
onRunningChanged: {

if (running == false)
root.destroy()

}
}

}

Make sure you use the NumberAnimation on the BasicGameItem and not on the Quad. Other-
wise the detection will fail.

The collision target of our Target component will be the Player object. So we have to define a
radius property for in the Player component.

//Player.qml

Item3D {
...
property real radius: 1.5
...

}

9.3 Dynamic Object Creation

As explained above, the onion ring* targets need to be created dynamically. For that we will
use a timer in Gamelogic.qml to create new target every 4 seconds that flies towards the player.

To create new Target objects, we need first to load the Target component. Then, we can create
an instance of our Target component using the createObject method. Since we want to reuse
the component several times, we will load it when starting the application in GameLogig.qml.

Note: If the component is loaded over the network, we first need to wait for the component to
be ready before calling createObject

First, we define two properties in game.qml to store the score and to count the number of targets:

//game.qml
...

9.3. Dynamic Object Creation 26

Developing an arcade game with Qt3D, Release 0.1 (default)

property int score: 0
property int targetCount: 0
...

Then we implement the target timer in the GameLogic.qml.

//GameLogic.qml
...
property variant targetComponent: Qt.createComponent("Target.qml");
....
//Timer creates targets in a certain interval
Timer {

id: targetTimer
interval: 4000
repeat: true
running: true
onTriggered: {
targetCount++
var object = targetComponent.createObject(level,

{"position.x": (Math.random()-0.5) *8,
"position.y": (Math.random()-0.5) *6,
"scale": 3-0.2*targetCount, "collisionTarget": player})

object.collisionDetected.connect(targetCollision)
}

}

Once the object is created, we connect the collisionDetected signal to a function called target-
Collision where the score property defined earlier is incremented by one.

//GameLogic.qml
...
Item{

function targetCollision(sender) {
score++;

}
...

}

What’s Next?

Next we will see how to use States to handle the flow of our game.

9.3. Dynamic Object Creation 27

CHAPTER 10

States

In previous chapters, we have implemented most of our game logic and added many new com-
ponents. In this chapter we will see how to use the states concept in Qt Quick to define every
major event, that requires e.g. camera adjustment, or changes important parameters.

Let’s summarize, once again, the game flow. Once the application is started, a game menu
is shown and the player has two options: View the highscore table or start the game. When
starting the game, the camera has to move to the back of the hamburger* and the keyboard
controls will be enabled. The onion rings start to fly toward the player who has to try to hit
them. After a certain number of onion rings, the boss enemy should appear. The final fight will
take place from the birds eye view so the camera has to be moved first. Once the boss or player
have been destroyed, a dialog appears to enable the player to enter his name with his score to
store them in the highscore table.

We define the following states:

The Menu state: it’s the initial state where only the 3 buttons of the menu are
shown.

The Highscore state: it’s an extension to the Menu state where the highscore table
is also displayed.

The Enter Highscore state: Provides a textfield to enter the player’s name in the
highscore table. The whole game scene will be frozen.

The Game state: Moves the camera behind the hamburger and starts the game.
The keyboard controls are enabled and the game timer starts running.

The Boss Rotation state: Rotates the camera around the boss enemy then to a
position above the scenery.

The Boss Fight state: Adjusts the x-bound after the camera has moved to a different
point and starts the fight against the boss enemy.

//game.qml
...
state: "Menu"

states:[

28

Developing an arcade game with Qt3D, Release 0.1 (default)

State{
name: "Menu"
PropertyChanges {target: player; ax: 0; ay: 0; vx: 0; vy:0;

position: Qt.vector3d(0, 0, 0); restoreEntryValues: false}
PropertyChanges {target: root; score: 0; targetCount:0;

restoreEntryValues: false}
PropertyChanges {target: cam; center: Qt.vector3d(0, 0, 0) }

},
State{

name: "Highscore"
extend: "Menu"

},
State{

name: "EnterHighscore"
},
State{

name: "Game"
PropertyChanges {target: player; position: Qt.vector3d(0, 0, 0) }

},
State{

name: "BossFight"
PropertyChanges {target: player; ay: 0; vy:0;

position: Qt.vector3d(0, 0, 0); restoreEntryValues: false}
},
State{

name: "BossRotation"
PropertyChanges {target: player; position: Qt.vector3d(0, 0, 0) }

}
]
...

Note: We will cover the implementation of the game menu and the highscore dialog in the
next chapter.

The targetTimer and gameTimer should not start until either Game or BossFight state are
reached:

//Gamelogic.qml
...
id: targetTimer
running: root.state=="Game"
...
id: gameTimer;
running: root.state=="Game"||root.state=="BossFight"
...

Also, The player will not be able to move on the y axis during the fight against the boss enemy
and shooting lasers obviously must only be possible when there is a target to shoot. Later, we
will be implementing a fireLaser function.

//Gamelogic.qml
...
if(event.key == Qt.Key_W && root.state == "Game")

upPressed = true

29

Developing an arcade game with Qt3D, Release 0.1 (default)

if(event.key == Qt.Key_S && root.state == "Game")
downPressed = true

if(event.key == Qt.Key_Space && root.state == "BossFight")
fireLaser();

...

Note: Note that the default state of our game is Menu. As we didn’t yet implement the game
menu, at this stage of the implementation the user can not start the game as it’s supposed to be.

What’s Next?

Next we will implement the main menu for our game.

30

CHAPTER 11

Game Menu

In this chapter we will be implementing the game menu. With Qt Quick it’s easy to mix 2D
and 3D elements which enables us to add basic UI to our game.

11.1 Head-up display

A Head-up display (HUD) usually shows information to the player about the current game state
and the player’s conditions. There are actually three things we want to display: the level of the
laser’s energy, the hit points and the score.

So first we add the following properties to the player:

//Player.qml
...
property int hitpoints
property real maxHitPoints: 10

property int energy
property int maxEnergy: 2000
...

Then we want to display two energy bars. A red one in the center to show the player’s hit points
and a blue one to show the laser’s energy left. The current score is displayed in the upper left
corner of the viewport. To archieve that, we add a new Hud.qml file that consist of an Item
containing two Rectangles that present the bars, and a Text element to display the score.

//Hud.qml
import QtQuick 2.0

Item {
id: hud

anchors.fill: parent

Text {
anchors.left: parent.left
anchors.top: parent.top
anchors.margins: 10

31

Developing an arcade game with Qt3D, Release 0.1 (default)

text: "Score: " + score;
style: Text.Raised
font.pixelSize: 20
color: "green"

}

Rectangle {
anchors.top: parent.top
anchors.topMargin: 20
anchors.horizontalCenter: parent.horizontalCenter
width: parent.width/2
height: 15
color: "transparent"
border.color: "red"
Rectangle{

anchors.left: parent.left
anchors.top: parent.top
anchors.bottom: parent.bottom
width: parent.width*player.hitpoints/player.maxHitPoints;
color: "red"

}
}

Rectangle {
anchors.right: parent.right
anchors.rightMargin: 20
anchors.verticalCenter: parent.verticalCenter
height: parent.height/3
width: 10
color: "transparent"
border.color: "blue"
Rectangle{

anchors.right: parent.right
anchors.left: parent.left
anchors.bottom: parent.bottom
height: parent.height*player.energy/player.maxEnergy;
color: "blue"

}
}

}

Then we instantiate the HUD in game.qml as follows:

//game.qml
...
Viewport {

...
//Head up display
Hud {id: hud}
...

}

11.1. Head-up display 32

Developing an arcade game with Qt3D, Release 0.1 (default)

11.2 Game menu

Once the game is started, a menu should be displayed. This menu consists of a button group
containing three buttons: start, highscore and exit. While the menu is displayed, the ham-
burger* is rotating in the background. When clicking on the “start” button, the game starts and
the camera is moved behind the hamburger. When clicking on the “highscore” button, a new
rectangle will appear and displays the highscores in a ListView. To exit the game the player can
simply click on the exit button.

Before we start implementing the menu, we first have to define two missing camera movements.
One is the rotation of the hamburger* while the game menu is displayed and the other moves
the camera behind the hamburger when we start the game:

//game.qml
...
//The game camera
camera: Camera {

id: cam
property real angle:0;
eye: Qt.vector3d(20 Math.sin(angle), 10, 20*Math.cos(angle))
NumberAnimation on angle{

id: hamburgerRotation
to: 100
running: false
duration: 1000000;

}
PropertyAnimation on eye {

id: moveBehindHamburger
to: Qt.vector3d(0, 0,-30)
duration: 2000

11.2. Game menu 33

Developing an arcade game with Qt3D, Release 0.1 (default)

running: false
}

}
...

Then we define a new button component in a new Button.qml file:

//Button.qml
import QtQuick 2.0

//Creates a simple button that has an attribute buttonText
Rectangle {

id:rootI
width: 200;
height: 50;
signal buttonClicked();
property variant buttonText;
radius: 5
border.color: "black"
border.width: 2
color: "darkblue"
opacity: 1
MouseArea {

hoverEnabled: true;
anchors.fill: parent;
onClicked: buttonClicked();
onEntered: border.color="white"
onExited: border.color="black"

}
Text {

anchors.centerIn: parent;
text: buttonText;
color: "white"

}
}

Next we create our menu component in a Menu.qml file. The menu consists of an Item with a
Column containing three buttons. When a button is clicked, the appropriate state will be set in
the root element (the viewport):

//Menu.qml
import QtQuick 2.0

Item {
visible: false
anchors.fill: parent
//The button group
Column {

id: buttonGroup
anchors.verticalCenter: parent.verticalCenter;
anchors.left: parent.left;
anchors.leftMargin: 20
spacing: 10

Button {
buttonText: "Start game"
onButtonClicked: root.state="Game"

11.2. Game menu 34

Developing an arcade game with Qt3D, Release 0.1 (default)

}

Button {
buttonText: "Highscore"
onButtonClicked: root.state="Highscore"

}

Button {
buttonText: "Exit"
onButtonClicked: Qt.quit()

}

}
}

Then we add the menu to the Viewport in game.qml.

//game.qml
...
Viewport {

...
Menu {id: gamemenu}
...

}

To save the highscore table, we will use an SQLite database. We will avoid discussing the detail
how to SQLite in QML. For more detail please refer to the Qt Quick Desktop Guide1.

For that, we create a new gameDB.js Stateless JavaScript library. This means that only one
instance will be created for all QML file including it. The library defines the database logic as
shown in the code below:

// gameDB.js

//making the gameDB.js a stateless library
.pragma library

.import QtQuick.LocalStorage 2.0 as Sql

// declaring a global variable for storing the database instance
var _db

//Opens the database connection
function openDB() {

print("gameDB.createDB()")
_db = Sql.openDatabaseSync("SpaceburgerDB","1.0","The Spaceburger Database"

,1000000);
createHighscoreTable();

}

//Creates the highscore table
function createHighscoreTable() {

print("gameDB.createTable()")
_db.transaction(function(tx) {

tx.executeSql("CREATE TABLE IF NOT EXISTS "

1http://qt.nokia.com/learning/guides

11.2. Game menu 35

http://qt.nokia.com/learning/guides

Developing an arcade game with Qt3D, Release 0.1 (default)

+"highscore (score INTEGER, name TEXT)");
});

}

//Reads the first 10 elements of the highscoretable and returns them as an array
function readHighscore() {

print("gameDB.readHighscore()")
var highscoreItems = {}
_db.readTransaction(function(tx) {

var rs = tx.executeSql("SELECT name, score FROM "
+"highscore ORDER BY score DESC LIMIT 0,10");
var item
for (var i=0; i< rs.rows.length; i++) {

item = rs.rows.item(i)
highscoreItems[i] = item;

}
});

return highscoreItems;
}

//Saves an element into the highscore table
function saveHighscore(score, name) {

print("gameDB.saveHighscore()")
_db.transaction(function(tx){

tx.executeSql("INSERT INTO highscore (score, name) "
+"VALUES(?,?)",[score, name]);

});

}

Next we create the highscore table in Menu.qml:

//Menu.qml
Item {

...
ListModel {

id: highscoreModel;
}

Component.onCompleted: {
GameDB.openDB();

}

Rectangle {
visible: root.state=="Highscore"
anchors.left: buttonGroup.right
anchors.right: parent.right
anchors.bottom: parent.bottom
anchors.top: parent.top
anchors.margins: 50
radius: 5
border.color: "black"
border.width: 2
color: "darkblue"
opacity: 0.7
Text {

11.2. Game menu 36

Developing an arcade game with Qt3D, Release 0.1 (default)

id: title
anchors.top: parent.top
anchors.horizontalCenter: parent.horizontalCenter
anchors.topMargin: 20
text: "Highscore"
font.bold: true
font.pointSize: 15
color: "white"

}
//The highscore table
ListView {

id: highscore
anchors.top: title.bottom
anchors.topMargin: 50
anchors.verticalCenter: parent.verticalCenter
width: parent.width-70
height: parent.height-title.height-50
model: highscoreModel;
delegate: Item {

anchors.left: parent.left; anchors.right: parent.right
anchors.margins: 40

height: 30
Text{anchors.left: parent.left; text: name; font.bold: true;

font.pointSize: 20; color: "white"}
Text{anchors.right: parent.right; text: score; font.bold: true;

font.pointSize: 20; color: "white"}
}

}
}

}

As you might have noticed, we have created an empty ListModel and used it in the ListView.
Next we are going to populate this model with the data we get out of the SQL table through the
readHighscore() function.

The first thing to do is to import the library:

//Menu.qml
import "gameDB.js" as GameDB

Now we can read the data from the highscore table. We will do that in the onVisibleChanged
signal handler of the highscore item, so that an update will occur every time the highscor is
displayed.

We use the GameDB’s readHighscore() function to read the highscore table from the databse
parse it into the ListModel we have already defined:

//Menu.qml
...

onVisibleChanged: {
if (visible == true) {

var highscoreTable=GameDB.readHighscore();
highscoreModel.clear();
for (var i in highscoreTable) {

print(highscoreTable[i])
highscoreModel.append(highscoreTable[i]);

}

11.2. Game menu 37

Developing an arcade game with Qt3D, Release 0.1 (default)

}
}

Adding a new highscore into the SQL table is possible once the game has been finished. A
dialog is displayed that asks the player to enter his name. The name and the score will then be
saved. The code of the dialog is implemeted into HighscoreDialog.qml as follows:

//HighscoreDialog.qml
import QtQuick 2.0
import "gameDB.js" as GameDB

Rectangle{
anchors.verticalCenter: root.verticalCenter
anchors.horizontalCenter: root.horizontalCenter
height:170
width:270
radius: 5
border.color: "black"
border.width: 2
color: "darkblue"
opacity: 0.7
visible: false
Text{

id: title
anchors.horizontalCenter: parent.horizontalCenter
anchors.top: parent.top
anchors.topMargin: 15
text: "Enter your name:"
font.pointSize: 17
color: "white"

}

Rectangle{
id: input
anchors.horizontalCenter: parent.horizontalCenter
anchors.top: title.bottom
anchors.topMargin: 15
height: 40
width: 200
radius: 2
color: "lightgray"
clip: true
TextInput{

id: inputField
anchors.fill: parent
color: "black"
text: "Name..."
font.pointSize: 17

}
}

Button {
anchors.bottom: parent.bottom;
anchors.bottomMargin: 15
anchors.right: parent.right
anchors.rightMargin: 15
buttonText: "OK"

11.2. Game menu 38

Developing an arcade game with Qt3D, Release 0.1 (default)

onButtonClicked: {
GameDB.saveHighscore(score, inputField.text)
root.state="Menu"

}
}

}

//main.qml
...
HighscoreDialog {id: highscoreDialog}
...

We now can update our states:

states:[
State{

name: "Menu"
PropertyChanges {target: player; ax: 0; ay: 0; vx: 0; vy:0;

position: Qt.vector3d(0, 0, 0); hitpoints: 2;
energy:2000; restoreEntryValues: false}

PropertyChanges {target: root; score: 0; targetCount:0;
restoreEntryValues: false}

PropertyChanges {target: cam; center: Qt.vector3d(0, 0, 0) }
PropertyChanges {target: gamemenu; visible: true;}
PropertyChanges {target: hamburgerRotation; running: true;}
PropertyChanges {target: hud; visible: false;}

},
State{

name: "Highscore"
extend: "Menu"

},
State{

name: "EnterHighscore"
PropertyChanges {target: hud; visible: true;}
PropertyChanges {target: highscoreDialog; visible: true;}

},
State{

name: "Game"
PropertyChanges {target: moveBehindHamburger; running: true;}
PropertyChanges {target: hud; visible: true;}

},
State{

name: "BossFight"
PropertyChanges {target: hud; visible: true;}
PropertyChanges {target: player; ay: 0; vy:0;

position: Qt.vector3d(0, 0, 0); restoreEntryValues: false}
},
State{

name: "BossRotation"
}

]

What’s Next?

Next we implement the boss enemy that should appear at the final level.

11.2. Game menu 39

CHAPTER 12

Boss enemy

The boss enemy appears at the end of a level after a certain number of targets has been passed.

Unlike in the first part of the level, the player observes the fight not from the back of the
hamburger*, but from the top. That also means the hamburger (and the enemy) can only be
moved on the x-axis. At the beginning of the fight, we have to set the y value to 0, which we
already did when we defined the states.

12.1 Camera movement

The camera will start moving when the enemy has arrived at its final position, in front of the
player. To accomplish this, a SequentialAnimation is started which moves the camera’s center
to the enemy’s position. After that, the camera pans around the enemy and at the end moves the
eye to the top of the scene and adjusts the camera’s center to the middle of the fighting scene.

After the animation is finished, the start of the fight is triggered by setting a new state for the
root item:

//game.qml
...
Viewport {

...
SequentialAnimation {
id: rotateAroundBoss
running: false
PropertyAnimation{

target: cam
properties: "center"
to: enemy.position
duration: 400

}
PropertyAnimation{

target: cam
properties: "eye"
duration: 2000
to: Qt.vector3d(30,5,50);

}

40

Developing an arcade game with Qt3D, Release 0.1 (default)

PropertyAnimation{
target: cam
properties: "eye"
duration: 2000
to: Qt.vector3d(-30,5,50);

}
PropertyAnimation{

target: cam
properties: "eye"
duration: 1000
to: Qt.vector3d(0,5,0);

}
ParallelAnimation {

PropertyAnimation{
target: cam
properties: "eye"
duration: 2000
to: Qt.vector3d(0, 140, -1);
}
PropertyAnimation{
target: cam
properties: "center"
running: false
duration: 1000;
to: Qt.vector3d(0,0,20);
}

}
onRunningChanged: {

if (running==false) {
root.state="BossFight"
}

}
}

}

We can also add the animation to the states:

//game.qml
...

State{
name: "BossRotation"

PropertyChanges {target: rotateAroundBoss; running: true }
}

...

12.2 Movement

For the boss enemy, we create Enemy.qml.

It uses the Fruits.3ds model, which has to first be pretransformed in order for it to fit into our
scene:

//Enemy.qml
import QtQuick 2.0
import Qt3D 1.0

12.2. Movement 41

Developing an arcade game with Qt3D, Release 0.1 (default)

//Creates an enemy
Item3D {
id: enemy

//Size of the object for the collision detection
property real radius: 1.5

mesh: Mesh { source: "Fruits/Fruits.3ds"; options: "ForceSmooth";}

pretransform : [
Rotation3D {
angle: -180
axis: Qt.vector3d(0, 1, 0)
},
Scale3D {
scale: 0.01
}

]
}

The enemy will be created after ten targets have been passed so we have to extend the target-
Timer code and add the boss enemy component:

//Gamelogic.qml
...
property variant bossEnemyComponent: Qt.createComponent("Enemy.qml")
...
Timer {

id: targetTimer
...
onTriggered: {

var component;
//After a certain amount of targets were created the boss enemy appears
if (targetCount>10) {

targetTimer.stop()
enemy = bossEnemyComponent.createObject(level)

}
//Targets are constantly created and fly towards the player
else {

targetCount++
var object = targetComponent.createObject(level,
{"position.x": (Math.random()-0.5) * 8,
"position.y": (Math.random()-0.5) * 6,
"scale": 3-0.2*targetCount,
"collisionTarget": player})
object.collisionDetected.connect(targetCollision)

}
}
}
...

Furthermore, we are adding a property called enemy* to main.qml to be able to easily access
the object:

//game.qml
...
Viewport {

12.2. Movement 42

Developing an arcade game with Qt3D, Release 0.1 (default)

...
property variant enemy
...

}

When the enemy is created, it will approach the player, stop at a distance of 40, and afterwards,
set a new state for the root element which will trigger the camera movement.

//Enemy.qml
...
//Animation which moves the the enemy towards the player
NumberAnimation on z{
running: true
duration: 10000
from: 200
to: 40
onRunningChanged: { if (running == false) root.state="BossRotation" }
}
...

The enemy will simply move from left to right and fire in constant intervals. Both the Sequen-
tialAnimation and the Timer will only run if the root item is in the BossFight state.

//Enemy.qml
...
Item3D {

...
//The enemy movement
SequentialAnimation {
id: bossMovement
running: root.state=="BossFight"
loops: Animation.Infinite
PropertyAnimation{

target: enemy
properties: "x"
duration: 5000
to: -16
easing.type: Easing.InOutSine

}
PropertyAnimation{

target: enemy
properties: "x"
duration: 5000
easing.type: Easing.InOutSine
to: 16

}
}

Timer {
id: shootTimer
interval: 1000
repeat: true
running: root.state=="BossFight"
onTriggered: {

shootLaser()
}
}

}

12.2. Movement 43

Developing an arcade game with Qt3D, Release 0.1 (default)

Because we use a SequentialAnimation here, more complex movements could be implemented
(for example the enemy flying in circles or at altering speed).

12.3 Weaponfire

We use a very popular technique called Billboarding* for bullets that are fired from and at the
enemy. It adjusts an item’s orientation so that it always faces the camera. Billboarding is very
often used for particle effects, (distant) vegetation or just to cut down polygons on far away 3D
Objects. Usually a billboard consists of a rectangle that is always facing the camera, but any
arbitrary 3D Object could be used for that.

In Qt3D there are two methods available that create billboard items. One of them is the Bill-
boardItem3D which uses a very fast way for creating billboards that face the camera plane.
This element however has some restrictions, whereas scaling and rotating of an item is not
possible. Because of that we take the LookAtTransform for creating a billboard that faces the
camera.

//Bullet.qml
Quad{

//defines the shadereffect, that should be used for the item
effect: lasereffect
transform: [

Rotation3D{
angle: 90
axis: Qt.vector3d(1, 0, 0)

},
LookAt{ subject: camPos}

]
//wrapper around the camera position
Item3D { id: camPos
position: cam.eye

}
}

We are using a Quad for our particle effect, that has to be rotated first, because it is lying in the
x,z plane. Afterwards the LookAt transformation is applied, which takes an Item3D as subject.
That is why we have to embed the camera’s position into a Item3D before assigning it to the
LookAt transform. The subject is the item, that should be looked at.

For now, we will just create a simple Effect for each bullet, i.e. a semitransparent texture is
mapped on top of the quad.

Effect {
id: lasereffect
blending: true
material: Material {

textureUrl: "bullet.png"
}

}

12.3. Weaponfire 44

Developing an arcade game with Qt3D, Release 0.1 (default)

We will reuse the collision detection, which we already built in the previous section, for the
bullets. The difference between the bullet and the onion rings is that a bullet has a direction and
a velocity that can both depend on the entity that shoots the bullet or power ups that the player
has collected. We therefore have to implement a new animation that handles the movement of
the bullet. Again, it is very important to only animate the position of the BasicGameItem and
not the Quad. Otherwise collision detection will not work.

//Bullet.qml
import QtQuick 2.0
import Qt3D 1.0
import Qt3D.Shapes 1.0

//This item represents a laser particle
BasicGameItem{
id: bullet
property variant dir: Qt.vector3d(0,0,1)
property real speed: 100;
Quad{

//defines the shadereffect, that should be used for the item
effect: lasereffect
transform: [
Rotation3D{

angle: 45
axis: Qt.vector3d(1, 0, 0)

},
LookAt{ subject: Item3D { position: cam.eye} }
]
Effect {
id: lasereffect
blending: true
material: Material {

textureUrl: "laser2.png"
emittedLight: Qt.rgba(1,0.8,0.8,1)

}
}

}
//The movement of the bullet
PropertyAnimation on position {

to: Qt.vector3d(x+speed*dir.x, y+speed*dir.y, z+speed*dir.z);
duration: 10000
onRunningChanged: {
//When the bulletanimation is finished and no target has been hit
if (running==false) {

bullet.destroy();
}
}

}
}

We have now got bullets with a working collision detection that move in a direction that can
be specified. The feature that is still missing is the firing mechanism for the bullets. We need
to make it possible for the player to shoot a bullet when pressing the space key, also the enemy
should be able to shoot back. Furthermore, the player and the enemy need a property which
holds the hit-points that are left and a function connected to the collisionDetected signal of the
bullets so that the hit-points can be subtracted.

12.3. Weaponfire 45

Developing an arcade game with Qt3D, Release 0.1 (default)

We first implement the latter for the enemy:

//Enemy.qml
property int hitpoints: 10
property real maxHitPoints: 10
....
function hit() {

hitpoints--
if (hitpoints <= 0) {

explode();
}

}

function explode () {
enemy.destroy()
root.state="EnterHighscore"

}
....

It is nearly the same for the player except that we do not delete the player after it explodes:

//Player.qml
property int hitpoints: 10
....
function hit() {

hitpoints--
if (hitpoints <= 0) {

explode();
}

}

function explode () {
root.state="EnterHighscore"

}
....

The firing mechanism for the enemy is very simple. We just create a new Bullet object with the
player as the target. Then we connect the collisionDetected signal to the player’s hit function:

//Enemy.qml
...
//Shoots a bullet
function shootLaser() {

var component = Qt.createComponent("Bullet.qml")
var object = component.createObject(level, {"position": enemy.position,
"radius": 0.2, "dir": Qt.vector3d(0,0,-1),
"collisionTarget": player});

object.collisionDetected.connect(player.hit)
object.collisionDetected.connect(object.destroy)

}
...

We implement the firing of the player’s bullet in Gamelogic.qml, where the fireLaser function
is executed after the space key has been pressed. Every time a bullet is fired, a certain amount
of energy is subtracted from the player, which we refill in the gameTimer:

12.3. Weaponfire 46

Developing an arcade game with Qt3D, Release 0.1 (default)

//Gamelogic.qml
...
id: gameTimer
onTriggered: {
if(player.energy<player.maxenergy)

player.energy++;
...
function fireLaser() {

if (player.energy>=40) {
print(player.y)
player.energy -=40
var component = Qt.createComponent("Bullet.qml")
var laserObject = component.createObject(level,

{"position": player.position,
"collisionTarget": enemy})

laserObject.collisionDetected.connect(enemy.hit)
}

}
...

The fight against the enemy should work fine now. One thing you have probably noticed is
that the area in which the hamburger* can be moved is fairly small. This is because of the new
perspective. That is why we have to expand the x_bound value during the fight against the boss
enemy.

//game.qml
...
property real x_bound: state == "BossFight" ? 16: 4.5;
...

You should now be able to fight against the boss enemy.

12.3. Weaponfire 47

Developing an arcade game with Qt3D, Release 0.1 (default)

What’s Next?

Next we will talk about shaders and see how to create particle effects with it.

12.3. Weaponfire 48

CHAPTER 13

Shaders

In the previous chapters, we have seen that we can define Effects with a texture and different
material properties for our geometry in QML/3D. For most areas of applications, we do not
need more than that, but if we want to achieve a custom effect, this technique has its limits. It
is, however, possible in Qt Quick 2.0 and QML/3D to define custom effects as shader programs
that allow you to extend the functionality of the built in effects.

The basics of shader programming are not covered in this guide. There are several tutorials out
there, some of them even Qt specific. If you do not yet have any experience with shaders, we
recommend that you first read the OpenGL-Tutorial1. In this section, we will only give you
advice on how to use shaders in QML/3D and show you how to use them.

In QML/3D, shader programming is possible using the ShaderProgram element, which is de-
rived from the more general Effect element. The ShaderProgram element has been extended by
two properties: fragmentShader and vertexShader. Both take a string that contains the GLSL
shader code.

13.1 Bulletshader

The shader for the fired bullets will mix two textures, rotate them and adjust the interpolation
level over time. The result should be the impression of a rotating and blinking object.

For rotation and interpolation, we are defining two new properties in the ShaderProgram ele-
ment. A special feature of the ShaderProgram is the automatic property to uniform binding.
This means that if we define a uniform variable in either of the shaders (fragment or vertex),
the uniform is automatically bound to the ShaderProgram’s property when they have the same
name. The following code serves as an example:

//Lasershader.qml
import QtQuick 2.0
import Qt3D 1.0

ShaderProgram {

1http://qt.nokia.com/learning/guides

49

http://qt.nokia.com/learning/guides

Developing an arcade game with Qt3D, Release 0.1 (default)

blending: true
property real angle : 1.0
property real interpolationFactor : 1.0
property string texture2: "texture2.png"
...
fragmentShader: "
uniform mediump float angle;
uniform mediump float interpolationFactor;
uniform sampler2D texture2;
...
"

}

What you should also notice is that you can not only bind simple integer and float variables
to uniforms, but also textures and matrices. Textures are therefore defined as string properties,
however, the first texture can be defined using the Effect’s texture property and is bound to the
qt_Texture0 uniform.

First we want to define the vertex shader, because it is a fairly simple task:

//Lasershader.qml
ShaderProgram {
...
vertexShader: "
attribute highp vec4 qt_Vertex;
uniform mediump mat4 qt_ModelViewProjectionMatrix;

attribute highp vec4 qt_MultiTexCoord0;
varying mediump vec4 texCoord;

void main(void)
{
gl_Position = qt_ModelViewProjectionMatrix * qt_Vertex;
texCoord = qt_MultiTexCoord0;
}
"
}

There are the predefined attributes qt_Vertex (vertex position), qt_MultiTexCoord0 (texture co-
ordinates) of the currently processed vertex and the qt_ModelViewProjectionMatrix. We want
to pass the texture coordinates to the next stage so we define a varying texCoord that we assign
the texture coordinates to.

The fragment shader will be a bit more involved. There are two major tasks that we have to
accomplish. Firstly, we need to rotate the texture according to the angle value and then we have
to interpolate between the two Sampler2Ds that have been assigned to the shader. The rotation
will be accomplished by rotating the texture coordinates with a 2D rotation matrix. Afterwards,
we will be using the built in mix function in order to mix two color values and hand over the
interpolation factor as a third parameter:

//Lasershader.qml
ShaderProgram {
...
fragmentShader: "
varying highp vec4 texCoord;
uniform sampler2D qt_Texture0;

13.1. Bulletshader 50

Developing an arcade game with Qt3D, Release 0.1 (default)

uniform sampler2D texture2;
uniform mediump float angle;
uniform mediump float interpolationFactor;
uniform mediump float hallo;
void main()
{
//The rotation matrix
mat2 RotationMatrix = mat2(cos(angle), -sin(angle),

sin(angle), cos(angle));

vec2 textureC = RotationMatrix*(texCoord.st-vec2(0.5))+vec2(0.5);

mediump vec4 texture1Color = texture2D(qt_Texture0, textureC);
mediump vec4 texture2Color = texture2D(texture2, textureC);
mediump vec4 textureColor = mix(texture1Color, texture2Color,

interpolationFactor);
gl_FragColor = textureColor;
}
"
}

Now we also want to animate the interpolationFactor and angle properties:

//Lasershader.qml

ShaderProgram {
...
SequentialAnimation on interpolationFactor
{

running: true; loops: Animation.Infinite
NumberAnimation {

from: 0.3; to: 0.7;
duration: 800

}
PauseAnimation { duration: 200 }
NumberAnimation {

from: 0.7; to: 0.3;
duration: 800

}
PauseAnimation { duration: 500 }

}

NumberAnimation on angle{
from:0
to: Math.PI
duration: 1000;
running: true; loops: Animation.Infinite;

}
}

For enabling this Effect on our bullets, we have two options. The first option would be to
directly assign the Lasershader to the effect property of the bullet, which would mean that
whenever a new bullet is created, a new ShaderProgram is also created:

//Bullet.qml
...

13.1. Bulletshader 51

Developing an arcade game with Qt3D, Release 0.1 (default)

effect: Lasershader { }
...

The second option would be to create it globally in game.qml and assign the id of the effect to
the bullet’s effect property. The latter method saves more resources, but as you might notice,
the angle and interpolationFactor stay the same for all bullets that are shot, and therefore, do
not look as good as in the first method:

//game.qml
...
Viewport {

...
Lasershader {id:bulleteffect}

}

//Bullet.qml
...
Quad {

effect: bulleteffect
...

13.2 Explosion

There are many ways to create explosions. Most of them, however, are quite difficult to im-
plement. Our approach will be a very simple one, but quite aesthetic and realistic looking.
We use the Billboarding* technique again and combine it with an animation. When an object
explodes, one or more quads are created on which an explosion is shown that has been cre-
ated before with a special program for example. In this context, Animated means that several
pictures of an explosion are shown after each other (the same concept, as when watching a
movie).

For a good explosion animation, we need at least 10 to 16 pictures to shown one after the
other. We can, however, not include them separately in the vertex shader because we only
have a certain amount of texture slots available on the graphic card. That is why we merge all
explosion frames together into one big texture. This texture will be uploaded to the GPU and
the fragment shader chooses which parts of the texture to use according to a time value. But
first of all we create a new file called Explosion.qml. This will contain one BillboardItem3D
that uses a quad as a mesh:

//Explosion.qml
import QtQuick 2.0
import Qt3D 1.0
import Qt3D.Shapes 1.0

Quad{
id: explosionItem
scale:5
transform: [
Rotation3D{

angle: 90
axis: Qt.vector3d(1, 0, 0)

},

13.2. Explosion 52

Developing an arcade game with Qt3D, Release 0.1 (default)

LookAt{ subject: camPos}
]
//wrapper around the camera position
Item3D { id: camPos
position: cam.eye
}

}

As already mentioned, we need a lifetime property for our explosion that has to be available in
the fragment shader:

//Explosion.qml
...
Quad{

...
NumberAnimation
{
running:true
target: program
property: "lifetime"
from: 0.0
to: 1.0;
duration: 1000
onRunningChanged: {

if(running==false)
explosionItem.enabled= false;

}
}

}

The ShaderProgram consists of the lifetime property used above, the explo.png texture, which
has 16 explosion frames, a vertex and a fragment shader:

//Explosion.qml
...
Quad{

...
effect: program
ShaderProgram {
id: program
texture: "explo.png"
property real lifetime : 1.0
blending: true
vertexShader: "
attribute highp vec4 qt_Vertex;
uniform mediump mat4 qt_ModelViewProjectionMatrix;

attribute highp vec4 qt_MultiTexCoord0;
uniform mediump float textureOffsetX;
varying mediump vec4 texCoord;

void main(void)
{
gl_Position = qt_ModelViewProjectionMatrix * qt_Vertex;
texCoord.st = qt_MultiTexCoord0.st;
}
"

13.2. Explosion 53

Developing an arcade game with Qt3D, Release 0.1 (default)

...
}

}

The vertex shader is not really exciting because it just computes the position of the vertex and
passes on the texture coordinates. The fragment shader, however, looks a bit more involved.
We first multiply the lifetime by the number of frames we have in our texture and then try to
find out which row and column position is the closest to our current lifetime value:

//Explosion.qml
...
ShaderProgram{

...
fragmentShader: "
varying highp vec4 texCoord;
uniform sampler2D qt_Texture0;
uniform mediump float lifetime;

void main(void)
{
mediump int life = int(lifetime 16.0);
mediump int row = life % 4;
mediump int column = life / 4;
mediump vec4 textureColor = texture2D(qt_Texture0,

vec2(texCoord.s/4.0+0.25*float(row) ,
1.0-texCoord.t/4.0-0.25*float(column)));

gl_FragColor = textureColor;
}
"

}

Suitable animated explosions can be found everywhere on the internet. There is also software
that can produce these textures from scratch. This technique is not only limited to displaying
explosions. Thunderbolts and fire can also be animated.

The last thing needed for our explosion to work is the integration into our game. There are
several ways of doing this. Either we define a global explosion which can be moved to the
position of the exploding object or we implement the explosion in the objects. We now create a
completely new component that can handle all possible explosions. For that the new component
ExplosionSystem.qml is created:

//ExplosionSystem.qml
import QtQuick 2.0

Timer {
id: explosion
running: true
property int loops: 40
property variant position: Qt.vector3d(0,0,0)
property variant explosionComponent: Qt.createComponent("Explosion.qml")
property real variation: 3

signal finished()

interval: 200
repeat: true

13.2. Explosion 54

Developing an arcade game with Qt3D, Release 0.1 (default)

onTriggered: {
loops--
var object = explosionComponent.createObject(level,
{"x": position.x+(Math.random()-0.5) * variation,
"y": position.y+(Math.random()-0.5) * variation,
"z": position.z+(Math.random()-0.5) * variation})

if (loops==0) {
finished()
explosion.destroy()

}
}

}

Note: Because we destroy the object after the loops property reaches 0, the ExplosionSystem
component may only be created dynamically with the createObject function.

The ExplosionSystem is created if the player has no hitpoints anymore:

//Player.qml
...
Item3D {
...
function explode () {

root.state="EnterHighscore"
var component = Qt.createComponent("ExplosionSystem.qml")
var object = component.createObject(level, {"position": position})
object.finished.connect(enemy.exploded)

}
}

The same applies for the enemey:

//Enemy.qml
...
Item3D {
...
function explode () {

root.score+=20
var component = Qt.createComponent("ExplosionSystem.qml")
var object = component.createObject(level, {"position": position})
object.finished.connect(enemy.exploded)
shootTimer.running=false
bossMovement.running=false
root.state="EnterHighscore"

}
}

What’s Next?

For this tutorial, this will be the final version of the game. Next we will however talk about how
we can extend and improve it and give some ideas and instructions for further enhancement.

13.2. Explosion 55

CHAPTER 14

Finalizing the game

Although the game is already playable, a few things are obviously still missing to bring it up to
a round figure. We have to extend the current game for that - add new levels and enemies and
make small adjustments to enhance game play.

More levels can easily be added. We need, however, a level counter and to exend the GameL-
ogic.qml. After the BossFight, the highscore dialog will be shown but the Game state will be
revoked again. In further levels, the targets could for example change into something else and
not fly straight towards the player but maybe move on the way on the y- or x-axis. This makes
it more difficult for the player to hit them.

Furthermore, small power-ups could be collected that could improve the hitpoints, energy level
or enhance maneuverability. In future levels, there could also be targets that have to be avoided
because they might cause damage to the player or decrease abilities.

As mentioned before, the boss enemy could also be greatly improved by giving it a different
moving pattern and other weapons. It should be able to move back and forth, avoid the players
weaponfire and perform some unexpected movements.

All of this can be accomplished by just extending the current structure.

56

	About this Guide
	Why should you read this guide?
	Get the source code and the guide in different formats
	License

	How we Proceed
	Overview of the ``SpaceBurger'' Game
	Application idea
	Controls
	Game menu

	Qt3D Basics
	Before you try the first example

	Hello world in Qt3D
	Loading a model
	Where to get 3D models?

	Using a Camera
	Animating the Camera's position

	Skybox
	Player Movement
	Update-timer
	Keyinput
	Basic motion equations
	Transformations

	Moving targets
	Onion Rings
	Collision-detection
	Dynamic Object Creation

	States
	Game Menu
	Head-up display
	Game menu

	Boss enemy
	Camera movement
	Movement
	Weaponfire

	Shaders
	Bulletshader
	Explosion

	Finalizing the game

