
Qt Quick Painting using Canvas Item
Release 1.0

Digia, Qt Learning

February 28, 2013

Contents

1 About this Guide 1
1.1 Why Would You Want to Read this Guide? 1
1.2 Get the Source Code and the Guide in Different Formats 1
1.3 License . 2

2 Introduction 3
2.1 A Basic Example . 3
2.2 Essential Context2D Properties / Methods . 5

3 A Pie Chart 7
3.1 The Layout & the Conceptual Context of the Pie Chart 7
3.2 How to Draw a Sector . 10
3.3 Drawing the Chart . 12
3.4 Finalizing the Chart . 13

4 Porting HTML5 Canvas Code to Qt Quick 18
4.1 The HTML5 Canvas Code . 18
4.2 The Qt Quick Canvas Code . 20

5 Conclusion 23

i

ii

CHAPTER 1

About this Guide

1.1 Why Would You Want to Read this Guide?

The goal of this guide is to inform you about the best programming practices using the Canvas
type in Qt Quick 2.0. A prerequisite to this guide is to have a solid understanding of the
QML language, so I recommend reading the Qt Quick Application Development Primer first
to understand how to use Qt Quick for application development. Throughout this guide, we’ll
walk you through various aspects and examples of Qt Quick 2.0 Painting API with Canvas.
References to other information sources are provided to make it easy for you to deepen your
understanding of the used API.

1.2 Get the Source Code and the Guide in Different For-
mats

A .zip file that contains the example source code referred in each chapter:

Source code1

The guide is available in the following offline formats:

• PDF2

• ePub3 for ebook readers.

• Qt Help4 for Qt Assistant and Qt Creator.

1http://releases.qt-project.org/learning/developerguides/canvastutorial/canvasexample_src.zip
2http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.pdf
3http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.epub
4http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.qch

1

http://releases.qt-project.org/learning/developerguides/canvastutorial/canvasexample_src.zip
http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.pdf
http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.epub
http://releases.qt-project.org/learning/developerguides/canvastutorial/QtQuickCanvasTutorial.qch

Qt Quick Painting using Canvas Item, Release 1.0

1.3 License

Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies). All rights reserved.

This work, unless otherwise expressly stated, is licensed under a Creative Commons
Attribution-ShareAlike 2.5.

The full license document is available from http://creativecommons.org/licenses/by-
sa/2.5/legalcode .

Qt and the Qt logo is a registered trade mark of Digia plc and/or its subsidiaries and is used
pursuant to a license from Digia plc and/or its subsidiaries. All other trademarks are property
of their respective owners.

What’s Next?

Next we will go through a brief instruction of the Painting APIs in Qt Quick 2.0 and a basic
example.

1.3. License 2

http://creativecommons.org/licenses/by-sa/2.5/legalcode
http://creativecommons.org/licenses/by-sa/2.5/legalcode

CHAPTER 2

Introduction

If you want to draw custom graphics within your Qt Quick application, the Qt Quick Canvas1

item is your choice.

The Canvas type was introduced in Qt Quick 2.0 and provides an area in which you can draw
using JavaScript. It uses a high-level command-set based on the HTML5 Canvas specification2.
The Canvas type allows you to draw basic and complex shapes, add color, gradients, shadows,
images, text, and access low-level pixel data. Using JavaScript, facilitates the presentation of
dynamic content.

After a brief introduction to the Canvas type, we’ll develop an interactive pie chart visualiza-
tion. Later in this guide, we’ll see how to port existing HTML5 Canvas code to a Qt Quick 2
application.

This tutorial introduces you to the Qt Quick Canvas using example programs and is not meant
to show each and every aspect of this type. A detailed description of the Canvas type and its
supported rendering commands can be found in the Qt documentation pages (Canvas3, Con-
text2D4). Also note that a large number of good HTML5 Canvas API tutorials are available on
the internet. As the Qt Quick Canvas type is based on the HTML5 specification, these tutorials
can serve as an excellent starting point to learn drawing. We have listed a few of those tutorials
at the end of this tutorial <conclusion.html>. We also assume that you are already familiar
with Qt Quick in general, as this tutorial does refer to some the non-Canvas features.

2.1 A Basic Example

The Qt Quick Canvas type provides a place in your application to draw upon. The actual
drawing as well as the resource handling is done by its associated :qt5-snapshot:‘Context2D
<qtquick/qml-qtquick2-context2d.html>‘_ type, which provides the drawing API and man-
ages the transformation stack and style state. It also lets you customize some of its internals
such as multithreading, tiling, and the usage of hardware acceleration.

1http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-canvas.html
2http://www.w3.org/TR/html5/the-canvas-element.html
3http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-canvas.html
4http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-context2d.html

3

http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-canvas.html
http://www.w3.org/TR/html5/the-canvas-element.html
http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-canvas.html
http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-context2d.html
http://doc-snapshot.qt-project.org/qtquick/qml-qtquick2-context2d.html

Qt Quick Painting using Canvas Item, Release 1.0

Let’s start with a simple example: a small piece of code that displays a colored rectangle:

This is the source code:

/**
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).

** Contact: http://www.qt-project.org/legal

**
** $QT_BEGIN_LICENSE:BSD$

** You may use this file under the terms of the BSD license as follows:

**
** "Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions are

** met:

** * Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

** * Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in

** the documentation and/or other materials provided with the

** distribution.

** * Neither the name of Digia Plc and its Subsidiary(-ies) nor the names

** of its contributors may be used to endorse or promote products derived

** from this software without specific prior written permission.

**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

**
** $QT_END_LICENSE$

**
**/
import QtQuick 2.0

2.1. A Basic Example 4

Qt Quick Painting using Canvas Item, Release 1.0

Rectangle {
id: root
width: 360; height: 360
color: "#3C3C3C"

Canvas {
id: canvas
width: 300; height: 300
anchors.centerIn: parent

onPaint: {
// get the drawing context
var ctx = canvas.getContext(’2d’)

// create a rectangle path
ctx.rect(50, 50, 200, 200)

// setup fill color
ctx.fillStyle = "#FFF0A5"

// fill path
ctx.fill()

// setup line width and stroke color
ctx.lineWidth = 4
ctx.strokeStyle = "#468966"

// stroke path
ctx.stroke()

}
}

}

The usual way is to declare a Canvas type and place the drawing commands inside its
onPaint handler. After acquiring the drawing context, we prepare a rectangular path us-
ing rect(real x, real y, real w, real h). Then we set up the fill color state
to yellow using fillStyle and fill the rectangle by calling fill(). The green border of
the rectangle is drawn by setting strokeStyle and calling stroke() respectively. The
lineWidth property sets the width of the stroke.

Note: The order of stroke() and fill() matters: The stroke pattern is drawn centered
along the path (in this example with a 2 px width pattern to the left side and a 2 px width pattern
to the right side). If we call stroke() before fill(), fill() would over paint the inner
part of the border resulting in a 2 px wide border.

2.2 Essential Context2D Properties / Methods

Here is an overview of the most frequently used drawing commands:

2.2. Essential Context2D Properties / Methods 5

Qt Quick Painting using Canvas Item, Release 1.0

Group Operation Note
Path beginPath() Begin new path
Path moveTo(x, y) Move to position
Path lineTo(x, y) Add line path
Path rect(x, y, width, height) Add rect path
Path ellipse(x, y, width, height) Add ellipse path
Path

arc(x, y, radius, startAngle,
endAngle, anticlock-
wise)

Add arc path

Path arcTo(x1, y1, x2, y2, radius) Add arc path
Path text(text, x, y) Add text path
Transformation translate(x, y) Move coordinate system
Transformation rotate(angle) Rotate coordinate system
Transformation scale(x, y) Scale coordinate system
Transformation shear(sh, sv) Shear coordinate system
Style strokeStyle Set up line style
Style lineWidth Set up line width
Style fillStyle Set up fill style
Drawing stroke() Draw path using style
Drawing fill() Fill path using style

What’s Next?

In the next chapter we will go through some more advanced usage of the API by drawing a Pie
Chart.

2.2. Essential Context2D Properties / Methods 6

CHAPTER 3

A Pie Chart

In this chapter, we’ll present a more elaborate example: we’ll create a pie chart item that
visualizes the data of a Qt Quick ListModel similar to the Qt Widget example1. The ListModel’s
values are shown in a ListView next to the chart. If one of its entries is selected, the according
sector of the pie chart gets highlighted.

The final application looks like this:

3.1 The Layout & the Conceptual Context of the Pie
Chart

Let’s start with the layout of the application and the context in which the pie chart lives. This
means setting up the ListModel, placing the Canvas and creating the ListView.

1http://qt-project.org/doc/qt-4.8/itemviews-chart.html

7

http://qt-project.org/doc/qt-4.8/itemviews-chart.html

Qt Quick Painting using Canvas Item, Release 1.0

The data model holds roles for the item’s labels, values and color values. We populate this
model with an example dataset:

import QtQuick 2.0

Rectangle {
id: root
width: 640
height: 360
color: "#3C3C3C"

ListModel {
id: model
ListElement { label:"Scientific Research";

value:21; color:"#99e600" }
ListElement { label:"Engineering & Design";

value:18; color:"#99cc00" }
ListElement { label:"Automotive";

value:14; color:"#99b300" }
ListElement { label:"Aerospace";

value:13; color:"#9f991a" }
ListElement { label:"Automation & Machine Tools";

value:13; color:"#a48033" }
ListElement { label:"Medical & Bioinformatics";

value:13; color:"#a9664d" }
ListElement { label:"Imaging & Special Effects";

value:12; color:"#ae4d66" }
ListElement { label:"Defense";

value:11; color:"#b33380" }
ListElement { label:"Test & Measurement Systems";

value:9; color:"#a64086" }
ListElement { label:"Oil & Gas";

value:9; color:"#994d8d" }
ListElement { label:"Entertainment & Broadcasting";

value:7; color:"#8d5a93" }
ListElement { label:"Financial";

value:6; color:"#806699" }
ListElement { label:"Consumer Electronics";

value:4; color:"#8073a6" }
ListElement { label:"Other";

value:38; color:"#8080b3" }
}

...

The canvas that shows the pie chart is placed in the left half of the application. We’ll be

3.1. The Layout & the Conceptual Context of the Pie Chart 8

Qt Quick Painting using Canvas Item, Release 1.0

implementing the drawing later in the following sections:
...

Canvas {
id: canvas
anchors.top: parent.top
anchors.bottom: parent.bottom
anchors.left: parent.left
anchors.right: parent.horizontalCenter

}
...

On the right side, we display the model’s data in a list view, which shows the item’s labels and
values in colored rows. It represents the legend of the chart so to say:
...

ListView {
id: view
anchors.top: parent.top
anchors.bottom: parent.bottom
anchors.left: parent.horizontalCenter
anchors.right: parent.right
anchors.margins: 16
clip: true
focus: true
model: model
delegate: Item {

width: view.width
height: 32
Rectangle {

anchors.fill: parent
anchors.margins: 1
radius: 2
color: model.color
border.color: Qt.lighter(root.color)

}
Text {

anchors.verticalCenter: parent.verticalCenter
anchors.left: parent.left
anchors.margins: 8
text: model.label
color: "#1C1C1C"

}
Text {

anchors.verticalCenter: parent.verticalCenter
anchors.right: parent.right
anchors.margins: 8
text: model.value
color: "#1C1C1C"

}
}

}
}

3.1. The Layout & the Conceptual Context of the Pie Chart 9

Qt Quick Painting using Canvas Item, Release 1.0

3.2 How to Draw a Sector

A pie chart is a circular chart consisting of several sectors - one for each data set. The area of
each sector is proportional to the value it represents. So let’s first take a look at how to draw
one of the pie chart sectors.

The size of a sector is defined by the length of its arc or the arc’s subtending angle. If you think
of the whole pie having an angle of 2 PI, each sector should cover an angle of value * (2

* PI) / SUM_OF_VALUES.

To draw the arc, we use the arc(real x, real y, real radius, real
startAngle, real endAngle, bool anticlockwise) function. This function
creates a circular path on the circumference of a circle, which is centered around (x, y) and
has the given radius. To complete the pie segment, we also need to draw the lines that go from
the circle’s center to the arc’s edges. Therefore we move the cursor’s position to the center
point, draw the arc, and then draw a line back to the center. The arc() function automatically
generates a line from the cursor’s initial position at the center to the starting point of the arc in
addition to the arc itself.

/**
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).

** Contact: http://www.qt-project.org/legal

**
** $QT_BEGIN_LICENSE:BSD$

** You may use this file under the terms of the BSD license as follows:

**
** "Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions are

** met:

** * Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

** * Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in

3.2. How to Draw a Sector 10

Qt Quick Painting using Canvas Item, Release 1.0

** the documentation and/or other materials provided with the

** distribution.

** * Neither the name of Digia Plc and its Subsidiary(-ies) nor the names

** of its contributors may be used to endorse or promote products derived

** from this software without specific prior written permission.

**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

**
** $QT_END_LICENSE$

**
**/
// begin a new path
ctx.beginPath()

// move the cursor to the center
ctx.moveTo(centerX, centerY)

// add the arc including the line to the beginning of the arc
ctx.arc(centerX, centerY, radius, startAngle, endAngle, anticlockwise)

// add the line back to the center
ctx.lineTo(centerX, centerY)

// fill the piece
ctx.fillStyle = fillStyle
ctx.fill()

// stroke the piece
ctx.lineWidth = lineWidth
ctx.strokeStyle = strokeStyle
ctx.stroke()

This is how the output of an application using the code described above looks:

3.2. How to Draw a Sector 11

Qt Quick Painting using Canvas Item, Release 1.0

3.3 Drawing the Chart

Next, we will draw the complete pie chart. After this step, the application looks like this:

In the onPaint handler, we iterate over the model’s elements and draw one pie sector for each
entry (with its specific start and end angle, and filled with the previously assigned color). To
make this set of pieces sum up to form a full circle, we also need to know the model’s sum of
values. We calculate this value in a JavaScript function.
...

Canvas {
id: canvas
anchors.top: parent.top
anchors.bottom: parent.bottom
anchors.left: parent.left
anchors.right: parent.horizontalCenter

// enable anti-aliasing
smooth: true

onPaint: {
var ctx = canvas.getContext(’2d’)

ctx.clearRect(0, 0, width, height)

// store the circles properties
var centerX = width / 2

3.3. Drawing the Chart 12

Qt Quick Painting using Canvas Item, Release 1.0

var centerY = height / 2
var radius = 0.9 * Math.min(width, height) / 2
var startAngle = 0.0
var endAngle = 0.0

// calculate the factor that scales the angles
// to make the sectors sum up to a full circle
var angleFactor = 2 * Math.PI / modelSum()

ctx.lineWidth = 2
ctx.strokeStyle = Qt.lighter(root.color)

// iterate over the model’s elements
for (var index = 0; index < model.count; index++) {

// calculate the start and end angles
startAngle = endAngle
endAngle = startAngle + model.get(index).value * angleFactor

ctx.fillStyle = model.get(index).color

// draw the piece
ctx.beginPath()
ctx.moveTo(centerX, centerY)
ctx.arc(centerX, centerY, radius, startAngle, endAngle, false)
ctx.lineTo(centerX, centerY)
ctx.fill()
ctx.stroke()

}
}

// calculate the model’s sum of values
function modelSum() {

var modelSum = 0
for (var index = 0; index < model.count; index++) {

modelSum += model.get(index).value
}
return modelSum

}
}

...

3.4 Finalizing the Chart

In this chapter we’ll enhance the pie chart’s appearance and also provide interactivity. This is
how the application looks after the enhancement:

3.4. Finalizing the Chart 13

Qt Quick Painting using Canvas Item, Release 1.0

In order to make the application more alive, we change the chart’s appearance according to the
list view’s currently selected item. We add a mouse area to the list view and mark the current
item with a highlight. To make the canvas respond to changes in the selection, we request a
repaint whenever the current item changes.
...

ListView {
id: view
anchors.top: parent.top
anchors.bottom: parent.bottom
anchors.left: parent.horizontalCenter
anchors.right: parent.right
anchors.margins: 16
clip: true
focus: true
model: model
delegate: Item {

width: view.width
height: 32
Rectangle {

anchors.fill: parent
anchors.margins: 1
radius: 2
color: model.color
border.color: Qt.lighter(root.color)

}
Text {

anchors.verticalCenter: parent.verticalCenter
anchors.left: parent.left
anchors.margins: 8
text: model.label
color: "#1C1C1C"

}
Text {

anchors.verticalCenter: parent.verticalCenter
anchors.right: parent.right
anchors.margins: 8
text: model.value
color: "#1C1C1C"

}

// handle mouse clicks
MouseArea {

anchors.fill: parent
onClicked: {

view.currentIndex = index

3.4. Finalizing the Chart 14

Qt Quick Painting using Canvas Item, Release 1.0

}
}

}

// highlight the currently selected item
highlight: Item {

z: 10
width: view.currentItem.width
height: view.currentItem.height
Rectangle {

anchors.fill: parent
anchors.margins: 1
radius: 2
color: "transparent"
border.width: 3
border.color: Qt.lighter(model.get(view.currentIndex).color)
Behavior on border.color {

PropertyAnimation {}
}

}
}

// request a repaint of the canvas whenever
// the currently selected item changes
onCurrentIndexChanged: {

canvas.requestPaint()
}

}
...

The pie chart sector representing the selected entry is also highlighted by increasing the sector’s
radius by 2%. We also want the highlighted sector to be on the right side of the chart, so we
rotate the canvas based on the list view’s currentItem property. To smooth this change, we
apply a behavior to the rotation using a spring animation. Finally, we overlay a radial gradient
from transparent white to a darker gray to further brush up the pie chart’s appearance.
...

Canvas {
id: canvas
anchors.top: parent.top
anchors.bottom: parent.bottom
anchors.left: parent.left
anchors.right: parent.horizontalCenter
smooth: true

// animate the rotation
Behavior on rotation {

SpringAnimation { spring: 1; damping: 0.2 }
}

onPaint: {
var ctx = canvas.getContext(’2d’)

ctx.clearRect(0, 0, width, height)

var centerX = width / 2
var centerY = height / 2

3.4. Finalizing the Chart 15

Qt Quick Painting using Canvas Item, Release 1.0

var radius = 0.9 * Math.min(width, height) / 2
var radiusFactor = 1.0
var startAngle = 0.0
var endAngle = 0.0

var angleFactor = 2 * Math.PI / modelSum()

ctx.lineWidth = 2
ctx.strokeStyle = Qt.lighter(root.color)

for (var index = 0; index < model.count; index++) {
startAngle = endAngle
endAngle = startAngle + model.get(index).value * angleFactor

// scale the currently selected piece and
// rotate the canvas element accordingly
if (index == view.currentIndex) {

radiusFactor = 1.02
canvas.rotation = - 180 / Math.PI * (startAngle +

(endAngle - startAngle) / 2)
} else {

radiusFactor = 1.0
}

ctx.fillStyle = model.get(index).color

ctx.beginPath()
ctx.moveTo(centerX, centerY)
ctx.arc(centerX, centerY, radius * radiusFactor,

startAngle, endAngle, false)
ctx.lineTo(centerX, centerY)
ctx.fill()
ctx.stroke()

}

// overlay a radial gradient
var gradient = ctx.createRadialGradient(centerX, centerY,

0, centerX, centerY, radius)
gradient.addColorStop(0.0, Qt.rgba(1.0, 1.0, 1.0, 0.0))
gradient.addColorStop(1.0, Qt.rgba(0.0, 0.0, 0.0, 0.3))
ctx.beginPath()
ctx.moveTo(centerX, centerY)
ctx.arc(centerX, centerY, radius, 0, 2 * Math.PI, false)
ctx.fillStyle = gradient
ctx.fill()

}

function modelSum() {
var modelSum = 0
for (var index = 0; index < model.count; index++) {

modelSum += model.get(index).value
}
return modelSum

}
}

...

3.4. Finalizing the Chart 16

Qt Quick Painting using Canvas Item, Release 1.0

Now we’re done! We’ve successfully created a nice looking pie chart.

What’s Next?

The next chapter demonstrates how to port HTML5 Canvas code into the Canvas Item of Qt
Quick.

3.4. Finalizing the Chart 17

CHAPTER 4

Porting HTML5 Canvas Code to Qt
Quick

In this page, we want to show how easy it is to port existing HTML5 Canvas code to Qt Quick
using the Canvas element.

Note: A general list of the necessary changes can be found in the Qt documentation for
:qt5-snapshot: Qt Quick Canvas.

4.1 The HTML5 Canvas Code

We are going to port the spirograph1 example used in this HTML5 Canvas Tutorial2.

The HTML5 code looks like this:

/**
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).

** Contact: http://www.qt-project.org/legal

**
** $QT_BEGIN_LICENSE:BSD$

** You may use this file under the terms of the BSD license as follows:

**
** "Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions are

** met:

** * Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

** * Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in

** the documentation and/or other materials provided with the

** distribution.

1http://en.wikipedia.org/wiki/Spirograph
2https://developer.mozilla.org/en/Canvas_tutorial/Transformations

18

http://en.wikipedia.org/wiki/Spirograph
https://developer.mozilla.org/en/Canvas_tutorial/Transformations

Qt Quick Painting using Canvas Item, Release 1.0

** * Neither the name of Digia Plc and its Subsidiary(-ies) nor the names

** of its contributors may be used to endorse or promote products derived

** from this software without specific prior written permission.

**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

**
** $QT_END_LICENSE$

**
**/
function draw() {

var ctx = document.getElementById(’canvas’).getContext(’2d’);
ctx.fillRect(0,0,300,300);
for (var i=0;i<3;i++) {

for (var j=0;j<3;j++) {
ctx.save();
ctx.strokeStyle = "#9CFF00";
ctx.translate(50+j*100,50+i*100);
drawSpirograph(ctx,20*(j+2)/(j+1),-8*(i+3)/(i+1),10);
ctx.restore();

}
}

}
function drawSpirograph(ctx,R,r,O){

var x1 = R-O;
var y1 = 0;
var i = 1;
ctx.beginPath();
ctx.moveTo(x1,y1);
do {

if (i>20000) break;
var x2 = (R+r)*Math.cos(i*Math.PI/72)

- (r+O)*Math.cos(((R+r)/r)*(i*Math.PI/72))
var y2 = (R+r)*Math.sin(i*Math.PI/72)

- (r+O)*Math.sin(((R+r)/r)*(i*Math.PI/72))
ctx.lineTo(x2,y2);
x1 = x2;
y1 = y2;
i++;

} while (x2 != R-O && y2 != 0);
ctx.stroke();

}

4.1. The HTML5 Canvas Code 19

Qt Quick Painting using Canvas Item, Release 1.0

4.2 The Qt Quick Canvas Code

To port this code to a Qt Quick application, we can copy the code for drawing func-
tion into the onPaint handler of Qt Quick Canvas. We only need to change the
line in which we acquire the drawing context: instead of using a DOM API call
(document.getElementById(’canvas’)), we access the canvas directly. The
JavaScript function can be inserted as a member function of the canvas.

/**
**
** Copyright (C) 2012 Digia Plc and/or its subsidiary(-ies).

** Contact: http://www.qt-project.org/legal

**
** $QT_BEGIN_LICENSE:BSD$

** You may use this file under the terms of the BSD license as follows:

**
** "Redistribution and use in source and binary forms, with or without

** modification, are permitted provided that the following conditions are

** met:

** * Redistributions of source code must retain the above copyright

** notice, this list of conditions and the following disclaimer.

** * Redistributions in binary form must reproduce the above copyright

** notice, this list of conditions and the following disclaimer in

** the documentation and/or other materials provided with the

** distribution.

** * Neither the name of Digia Plc and its Subsidiary(-ies) nor the names

** of its contributors may be used to endorse or promote products derived

** from this software without specific prior written permission.

**
**
** THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

** "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

** LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

** A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

** OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

** OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE."

**
** $QT_END_LICENSE$

**
**/
import QtQuick 2.0

Canvas {
id: canvas
width: 300
height: 300

// the function "draw()" can be put into the "onPaint" handler
onPaint: {

// the acquisition of the rendering context needs to be adapted

4.2. The Qt Quick Canvas Code 20

Qt Quick Painting using Canvas Item, Release 1.0

var ctx = canvas.getContext(’2d’);

ctx.fillRect(0,0,300,300);
for (var i=0;i<3;i++) {

for (var j=0;j<3;j++) {
ctx.save();
ctx.strokeStyle = "#9CFF00";
ctx.translate(50+j*100,50+i*100);
drawSpirograph(ctx,20*(j+2)/(j+1),-8*(i+3)/(i+1),10);
ctx.restore();

}
}

}

// the utility function "drawSpirograph()" can remain unchanged
function drawSpirograph(ctx,R,r,O) {

var x1 = R-O;
var y1 = 0;
var i = 1;
ctx.beginPath();
ctx.moveTo(x1,y1);
do {

if (i>20000) break;
var x2 = (R+r)*Math.cos(i*Math.PI/72)

- (r+O)*Math.cos(((R+r)/r)*(i*Math.PI/72))

var y2 = (R+r)*Math.sin(i*Math.PI/72)
- (r+O)*Math.sin(((R+r)/r)*(i*Math.PI/72))

ctx.lineTo(x2,y2);
x1 = x2;
y1 = y2;
i++;

} while (x2 != R-O && y2 != 0);
ctx.stroke();

}
}

This is how the ported Qt Quick application looks like:

As you can see, it is surprisingly easy to use existing HTML5 Canvas code in your Qt Quick
application.

4.2. The Qt Quick Canvas Code 21

Qt Quick Painting using Canvas Item, Release 1.0

What’s Next?

The next chapter concludes this tutorial.

4.2. The Qt Quick Canvas Code 22

CHAPTER 5

Conclusion

In this tutorial, we explored some of the capabilities of the Qt Quick Canvas type. We developed
a nice looking pie chart visualization and ported HTML5 Canvas code to Qt Quick. If you want
to learn more about the canvas API, you can refer to some of the HTML5 tutorials available on
the internet.

Here is a small list of such tutorials:

• http://www.html5canvastutorials.com - A page dedicated to HTML5 Canvas tutorials

• https://developer.mozilla.org/en/Canvas_tutorial - An HTML5 Canvas tutorial on the
Mozilla Developer Network

• http://dev.opera.com/articles/view/html-5-canvas-the-basics - HTML5 Canvas basics on
the Opera developer portal

• http://www.canvasdemos.com - A page presenting HTML5 Canvas demos

The Qt Webkit Guide about canvas graphics1 also gives a detailed introduction to the HTML5
Canvas API. Also note this very handy cheat sheet2.

1http://qt-project.org/doc/qt-4.8/qtwebkit-guide-canvas.html
2http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html

23

http://www.html5canvastutorials.com
https://developer.mozilla.org/en/Canvas_tutorial
http://dev.opera.com/articles/view/html-5-canvas-the-basics
http://www.canvasdemos.com
http://qt-project.org/doc/qt-4.8/qtwebkit-guide-canvas.html
http://blog.nihilogic.dk/2009/02/html5-canvas-cheat-sheet.html

	About this Guide
	Why Would You Want to Read this Guide?
	Get the Source Code and the Guide in Different Formats
	License

	Introduction
	A Basic Example
	Essential Context2D Properties / Methods

	A Pie Chart
	The Layout & the Conceptual Context of the Pie Chart
	How to Draw a Sector
	Drawing the Chart
	Finalizing the Chart

	Porting HTML5 Canvas Code to Qt Quick
	The HTML5 Canvas Code
	The Qt Quick Canvas Code

	Conclusion

